Memory-based Collaborative Filtering on Twitter Using Support Vector Machine Classification

  • Anang Furkon RIfai Telkom University
  • Erwin Budi Setiawan Telkom University
Keywords: Recommender System, User-based, Item-based, Collaborative Filtering, Support Vector Machine


Nowadays, watching films at home is one of people's entertainment. Netflix is a service provider for watching films and provides many types of film genres. However, of the many films available, it makes users confused to choose which film to watch first. The solution to the problem is a system that provides recommendations for the best films to watch based on user ratings. Twitter is still people's favorite social media to express their feelings, thoughts, and criticisms. In this system, tweets serve as input data that will be processed into data with rating values. This research implemented a recommendation system based on user ratings from tweets using collaborative filtering combined with Support Vector Machine (SVM) classification and implemented it on user-based and item-based. The test results in this study show that Collaborative Filtering gets the best RMSE value results on item-based 0.5911 and 0.8162 on user-based. The Support Vector Machine (SVM) classification algorithm using hyperparameter tuning produces item-based values with a precision of 85.03% and recall of 90.71%, while user-based values with a precision of 87.75% and recall of 88.95%.


Download data is not yet available.


M. Chiny, M. Chihab, O. Bencharef, and Y. Chihab, “Netflix Recommendation System based on TF-IDF and Cosine Similarity Algorithms,” no. Bml 2021, pp. 15–20, 2022, doi: 10.5220/0010727500003101.

H. Tahmasebi, R. Ravanmehr, and R. Mohamadrezaei, “Social movie recommender system based on deep autoencoder network using Twitter data,” Neural Comput. Appl., vol. 33, no. 5, pp. 1607–1623, 2021, doi: 10.1007/s00521-020-05085-1.

N. Monarizqa, L. E. Nugroho, and B. S. Hantono, “Penerapan Analisis Sentimen Pada Twitter Berbahasa Indonesia Sebagai Pemberi Rating,” Jurnal Penelitian Teknik Elektro dan Teknologi Informasi, vol. 1. pp. 151–155, 2014.

D. Das, H. T. Chidananda, and L. Sahoo, Personalized movie recommendation system using twitter data, vol. 710. Springer Singapore, 2018.

X. Wang, Z. Dai, H. Li, and J. Yang, “A New Collaborative Filtering Recommendation Method Based on Transductive SVM and Active Learning,” Discret. Dyn. Nat. Soc., vol. 2020, no. 1, 2020, doi: 10.1155/2020/6480273.

L. Ren and W. Wang, “An SVM-based collaborative filtering approach for Top-N web services recommendation,” Futur. Gener. Comput. Syst., vol. 78, pp. 531–543, 2018, doi: 10.1016/j.future.2017.07.027.

M. Grčar, D. Mladenič, B. Fortuna, and M. Grobelnik, “Data sparsity issues in the collaborative filtering framework,” Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 4198 LNAI, pp. 58–76, 2006, doi: 10.1007/11891321_4.

X. Yu, Y. Chu, F. Jiang, Y. Guo, and D. Gong, “SVMs Classification Based Two-side Cross Domain Collaborative Filtering by inferring intrinsic user and item features,” Knowledge-Based Syst., vol. 141, pp. 80–91, 2018, doi: 10.1016/j.knosys.2017.11.010.

A. P. Gopi, R. N. S. Jyothi, V. L. Narayana, and K. S. Sandeep, “Classification of tweets data based on polarity using improved RBF kernel of SVM,” Int. J. Inf. Technol., 2020, doi: 10.1007/s41870-019-00409-4.

V. Subramaniyaswamy, R. Logesh, M. Chandrashekhar, A. Challa, and V. Vijayakumar, “A personalised movie recommendation system based on collaborative filtering,” Int. J. High Perform. Comput. Netw., vol. 10, no. 1–2, pp. 54–63, 2017, doi: 10.1504/IJHPCN.2017.083199.

P. Thakkar, K. Varma, V. Ukani, S. Mankad, and S. Tanwar, Combining User-Based and Item-Based Collaborative Filtering Using Machine Learning. Springer Singapore, 2019.

N. Samaiya, S. K. Raghuwanshi, and R. K. Pateriya, Shilling attack detection in recommender system using PCA and SVM, vol. 813. Springer Singapore, 2019.

M. Bobbi, K. Nasution, S. Suryadi, and R. Watrianthos, “Model Pengenalan Suara Teks Bebas Menggunakan Algoritma Support Vector Machine,” Jurnal Media Informatika Budidarma, vol. 4, no. 4, pp. 1249–1255, 2020, doi: 10.30865/mib.v4i4.2436.

A. Tripathi and A. K. Sharma, “Recommending Restaurants: A Collaborative Filtering Approach,” ICRITO 2020 - IEEE 8th Int. Conf. Reliab. Infocom Technol. Optim. (Trends Futur. Dir., pp. 1165–1169, 2020, doi: 10.1109/ICRITO48877.2020.9197946.

J. Cardoso-Fernandes, A. C. Teodoro, A. Lima, and E. Roda-Robles, “Semi-automatization of support vector machines to map lithium (Li) bearing pegmatites,” Remote Sens., vol. 12, no. 14, 2020, doi: 10.3390/rs12142319.

I. M. Parapat, M. T. Furqon, and Sutrisno, “Penerapan Metode Support Vector Machine ( SVM ) Pada Klasifikasi Penyimpangan Tumbuh Kembang Anak,” J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 2, no. 10, pp. 3163–3169, 2018, [Online]. Available:

A. R. D. Pratiwi and E. B. Setiawan, “Implementation of Rumor Detection on Twitter Using the SVM Classification Method,” J. RESTI (Rekayasa Sist. Dan Teknol. Informasi), no. 10, pp. 782–789, 2020.

G. Y. N. N. Adi, M. H. Tandio, V. Ong, and D. Suhartono, “Optimization for Automatic Personality Recognition on Twitter in Bahasa Indonesia,” Procedia Comput. Sci., vol. 135, pp. 473–480, 2018, doi: 10.1016/j.procs.2018.08.199.

Gita Safitri and Erwin Budi Setiawan, “Optimization Prediction of Big Five Personality in Twitter Users,” J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 6, no. 1, pp. 85–91, 2022, doi: 10.29207/resti.v6i1.3529.

F. Fkih, “Similarity measures for Collaborative Filtering-based Recommender Systems: Review and experimental comparison,” J. King Saud Univ. - Comput. Inf. Sci., no. xxxx, 2021, doi: 10.1016/j.jksuci.2021.09.014.

G. Xu, G. Jia, L. Shi, and Z. Zhang, “Personalized Course Recommendation System Fusing with Knowledge Graph and Collaborative Filtering,” Comput. Intell. Neurosci., vol. 2021, 2021, doi: 10.1155/2021/9590502.

How to Cite
Anang Furkon RIfai, & Erwin Budi Setiawan. (2022). Memory-based Collaborative Filtering on Twitter Using Support Vector Machine Classification. Jurnal RESTI (Rekayasa Sistem Dan Teknologi Informasi), 6(5), 702 - 709.
Artikel Teknologi Informasi

Most read articles by the same author(s)