Implementation of Rumor Detection on Twitter Using J48 Algorithm

  • Yoan Maria Vianny Universitas Telkom
  • Erwin Budi Setiawan Telkom University
Keywords: Twitter, Rumor, Pre-processing, J48, TF-IDF


The existence of rumors on Twitter has caused a lot of unrest among Indonesians. Unrecognized validity confuses users for that information. In this study, an Indonesian rumor detection system is built by using J48 Algorithm in collaboration with Term Frequency Inverse Document Frequency (TF-IDF) weighting method. Dataset contains 47.449 tweets that have been manually labeled. This study offers new features, namely the number of emoticons in display name, the number of digits in display name, and the number of digits in username. These three new features are used to maximize information about information sources. The highest accuracy is obtained by 75.76% using 90% training data and 1.000 TF-IDF features in 1-gram to 3-gram combinations.



Download data is not yet available.


E. B. Setiawan, D. H. Widyantoro, and K. Surendro, “Feature expansion using word embedding for tweet topic classification,” Proceeding 2016 10th Int. Conf. Telecommun. Syst. Serv. Appl. TSSA 2016 Spec. Issue Radar Technol., 2017, doi: 10.1109/TSSA.2016.7871085.

K. Wu, S. Yang, and K. Q. Zhu, “False rumors detection on Sina Weibo by propagation structures,” Proc. - Int. Conf. Data Eng., vol. 2015-May, pp. 651–662, 2015, doi: 10.1109/ICDE.2015.7113322.

S. Luna and M. Pennock, “Social media in emergency management advances, challenges and future directions,” 9th Annu. IEEE Int. Syst. Conf. SysCon 2015 - Proc., pp. 792–797, 2015, doi: 10.1109/SYSCON.2015.7116847.

Z. Wang, Y. Guo, J. Wang, Z. Li, and M. Tang, “Rumor Events Detection From Chinese Microblogs via Sentiments Enhancement,” IEEE Access, vol. 7, pp. 103000–103018, 2019, doi: 10.1109/access.2019.2928044.

S. A. Alkhodair, S. H. H. Ding, B. C. M. Fung, and J. Liu, “Detecting breaking news rumors of emerging topics in social media,” Inf. Process. Manag., vol. 57, no. 2, p. 102018, 2020, doi: 10.1016/j.ipm.2019.02.016.

Q. Li, Q. Zhang, and L. Si, “Rumor detection by exploiting user credibility information, attention and multi-task learning,” ACL 2019 - 57th Annu. Meet. Assoc. Comput. Linguist. Proc. Conf., pp. 1173–1179, 2020, doi: 10.18653/v1/p19-1113.

A. Bondielli and F. Marcelloni, “A survey on fake news and rumour detection techniques,” Inf. Sci. (Ny)., vol. 497, pp. 38–55, 2019, doi: 10.1016/j.ins.2019.05.035.

C. Song, C. Yang, H. Chen, C. Tu, Z. Liu, and M. Sun, “CED: Credible Early Detection of Social Media Rumors,” IEEE Trans. Knowl. Data Eng., vol. PP, no. 8, pp. 1–1, 2019, doi: 10.1109/tkde.2019.2961675.

M. Ibrahim, O. Abdillah, A. F. Wicaksono, and M. Adriani, “Buzzer Detection and Sentiment Analysis for Predicting Presidential Election Results in a Twitter Nation,” Proc. - 15th IEEE Int. Conf. Data Min. Work. ICDMW 2015, pp. 1348–1353, 2016, doi: 10.1109/ICDMW.2015.113.

Y. Geng, J. Sui, and Q. Zhu, “Rumor detection of Sina Weibo based on SDSMOTE and feature selection,” 2019 IEEE 4th Int. Conf. Cloud Comput. Big Data Anal. ICCCBDA 2019, pp. 120–125, 2019, doi: 10.1109/ICCCBDA.2019.8725715.

J. Li, H. Ji, D. Zhao, and Y. Feng, “Automatic Detection of Rumor on Social Network,” Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 9362, pp. 113–122, 2015, doi: 10.1007/978-3-319-25207-0.

E. B. Setiawan, D. H. Widyantoro, and K. Surendro, “Measuring information credibility in social media using combination of user profile and message content dimensions,” Int. J. Electr. Comput. Eng., vol. 10, no. 4, pp. 3537–3549, 2020, doi: 10.11591/ijece.v10i4.pp3537-3549.

J. Eka Sembodo, E. Budi Setiawan, and Z. Abdurahman Baizal, “Data Crawling Otomatis pada Twitter,” no. August, pp. 11–16, 2016, doi: 10.21108/indosc.2016.111.

A. Tripathy, A. Agrawal, and S. K. Rath, “Classification of sentiment reviews using n-gram machine learning approach,” Expert Syst. Appl., vol. 57, pp. 117–126, 2016, doi: 10.1016/j.eswa.2016.03.028.

C. P. Medina and M. R. R. Ramon, “Using TF-IDF to Determine Word Relevance in Document Queries Juan,” New Educ. Rev., vol. 42, no. 4, pp. 40–51, 2015, doi: 10.15804/tner.2015.42.4.03.

S. Diwandari and N. A. Setiawan, “Perbandingan Algoritme J48 Dan Nbtree Untuk Klasifikasi Diagnosa Penyakit Pada Soybean,” Semin. Nas. Teknol. Inf. dan Komun., vol. 2015, no. Sentika, pp. 205–212, 2015.

How to Cite
Yoan Maria Vianny, & Erwin Budi Setiawan. (2020). Implementation of Rumor Detection on Twitter Using J48 Algorithm. Jurnal RESTI (Rekayasa Sistem Dan Teknologi Informasi), 4(5), 775-781.
Artikel Teknologi Informasi