Realtime Object Detection Masa Siap Panen Tanaman Sayuran Berbasis Mobile Android Dengan Deep Learning
Abstract
Determining the harvesting period can be done visually, physically, computationally, and chemically. Since the harvesting process is crucial, late harvesting will affect post-harvest and production quality. Leafy vegetables have a relatively short ready-to-harvest period. Visual recognition of the harvesting period combined with image processing can recognize harvesting vegetables' visual characteristics. This study aims to build a deep learning-based mobile model to detect real-time vegetable plant objects such as bok choy, spinach, kale, and curly kale to determine whether these vegetables are ready for harvest. Mobile-based architecture is chosen due to latency, privacy, connectivity, and power consumption reason since there is no round-trip communication to the server. In this research, we use MobileNetV3 as the base architecture. To find the best model, we experiment using different image input size. We have obtained a maximum MAP score of 0. 705510 using a 36,000 image dataset. Furthermore, after implementing the model into the Android mobile application, we analyze the best practice in using the application to capture distance. In real-time detection usage, the detection can be done with an ideal distance of 5 cm and 10 cm.
Downloads
References
Supristiwendi and M.Azizah, "Pengaruh Penerapan Sistem Agribisnis Terhadap Pendapatan Usahatani Mentimun (cucumis sativus l.) Di Kecamatan Rantau Kabupaten Aceh Tamiang", J. Penelitian Agrisamudra, vol. 6, no. 2,: pp. 95-103, 2019, doi: 10.33059/jpas.v6i2.244.
Anonim, "Hidroponik Sayuran Ningrat", www.trubus-online.co.id, 2016, [Online]. Available: https://www.trubus-online.co.id/hidroponik-sayuran-ningrat/.
Anonim, "Berapa Umur Sayuran Siap Panen? 10 Jenis Sayuran Ini Paling Cepat Panen!", klikhijau.com, 2020, [Online], Available: https://klikhijau.com/read/berapa-umur-sayuran-siap-panen-10-jenis-sayuran-ini-paling-cepat-panen/.
Ichwan, M., Dewi, I. A., and S, Zeni. M, "Klasifikasi Support Vector Machine (SVM) Untuk Menentukan Tingkat Kemanisan Mangga Berdasarkan Fitur Warna", MIND Journal, vol. 3 no. 2, pp. 16-23, 2019, doi: 10.26760/mindjournal.v3i2.
Marifatul Azizah, L., Fadillah Umayah, S., and Fajar, F, "Deteksi Kecacatan Permukaan Buah Manggis Menggunakan Metode Deep Learning dengan Konvolusi Multilayer", Semesta Teknika, vol. 21 no. 2, pp. 230–236, 2018, doi: 10.18196/st.212229
Marlinda, R, "Cara Panen Pakcoy", riska2011611048.blogspot.com, 2018, [Online]. Available: http://riska2011611048.blogspot.com/2018/03/cara-panen-pakcoy.html#:~:text=Syarat Panen Pakcoy %3A,ketinggian tanaman seragam dan merata.
Nofita, V, "Panen Kangkung Lama ? Kata Siapa Siihhhh….", www.pulokambing.com, 2018, [Online]. Available: https://www.pulokambing.com/panen-kangkung-lama-kata-siapa-siihhhh/.
Permadi, Y., and Murinto, "Aplikasi Pengolahan Citra Untuk Identifikasi Kematangan Mentimun Berdasarkan Tekstur Kulit Buah Menggunakan Metode Ekstraksi Ciri Statistik", J. Informatika, vol. 9 no. 1, pp. 1028–1038, 2015, doi: 10.26555/jifo.v9i1.a2044.
Pratama, R., Assagaf, A. F., and Tempola, F., "Menggunakan Metode Transformasi Ruang Warna His Tomato Fruit Detection Detection Based On Color Features Using His Color Space Transformation Method", JIKO (Jurnal Informatika dan Ilmu Komputer), vol. 2 no. 2, pp. 81–86, 2019, doi: 10.33387/jiko.
Rianto, P., and Harjoko, A, "Penentuan Kematangan Buah Salak Pondoh Di Pohon Berbasis Pengolahan Citra Digital", IJCCS (Indonesian Journal of Computing and Cybernetics Systems), vol. 11 no. 2, pp. 143-154, 2017, doi: 10.22146/ijccs.17416.
Sa, I., Ge, Z., Dayoub, F., Upcroft, B., Perez, T., and McCool, C, "Deepfruits: A fruit detection system using deep neural networks", Sensors, vol. 16 no. 8, pp. 1222, 2016, doi: 10.3390/s16081222.
Septiaji, K. D., and Firdausy, K, "Deteksi Kematangan Daun Selada (Lactuca Sativa L) Berbasis Android Menggunakan Nilai RGB Citra", J. Ilmiah Teknik Elektro Komputer Dan Informatika, vol. 4 no. 1, pp. 20-27, 2018, doi: 10.26555/jiteki.v4i1.8994.
Widito, Y, "Cara Menanam Bayam Yang Benar", kutanam.com, 2020, [Online]. Available: https://kutanam.com/cara-menanam-bayam-yang-benar/.
Sharpe, Shaun and Schumann, Arnold and Yu, Jialin and Boyd, Nathan, "Vegetation detection and discrimination within vegetable plasticulture row-middles using a convolutional neural network", Precision Agriculture, vol. 21, pp. 264–277, 2020, doi: 10.1007/s11119-019-09666-6.
Kuznetsova, A., Maleva, T., and Soloviev, V, "Using YOLOv3 Algorithm with Pre- and Post-Processing for Apple Detection in Fruit-Harvesting Robot", Agronomy, vol. 10 no. 7, pp. 1016, 2020, doi: 10.3390/agronomy10071016.
Sreekanth, G., Thangaraj, P., and Kirubakaran, S, "Fruit Detection Using Improved K-Means Algorithm", Journal of Critical Reviews, vol. 7 no. 12, pp. 5-6, 2020, doi: 10.31838/jcr.07.12.02
Nishi, T., Kurogi, S., and Matsuo K, "Grading Fruits and Vegetables Using RGB-D Images and Convolutional Neural Network", IEEE SSCI (Symposium Series on Computational Intelligence), pp. 1-6, 2017, doi: 10.1109/SSCI.2017.8285278.
Qimei Wang, Feng Qi, Minghe Sun, Jianhua Qu, and Jie Xue, "Identification of Tomato Disease Types and Detection of Infected Areas Based on Deep Convolutional Neural Networks and Object Detection Techniques", Computational Intelligence and Neuroscience, vol. 2019, pp. 1-15, 2019. doi: 10.1155/2019/9142753.
Akbar, M., Sardjono, M., Cahyanti, M., and Swedia, E, "Perancangan Aplikasi Mobile Untuk Klasifikasi Sayuran Menggunakan Deep Learning Convolutional Neural Network", SEBATIK, vol. 24 no. 2, pp. 300-306, 2020, doi: 10.46984/sebatik.v24i2.1134.
Prabowo, H, "Deteksi Kondisi Kematangan Buah Jeruk Berdasarkan Kemiripan Warna Pada Ruang Warna RGB Berbasis Android", JESIK (Jurnal Elektronik Sistem Informasi dan Komputer), vol. 3 No. 2, 2017.
Yesiansyah, and Murinto, "Aplikasi Deteksi Kematangan Buah Sawit Menggunakan Metode Perbandingan Histogram Citra", JSTIF (Jurnal Sarjana Teknik Informatika), vol. 4 no. 3, 2016, doi: 10.12928/jstie.v4i3.10796.
Indarto and Murinto, "Deteksi Kematangan Buah Pisang Berdasarkan Fitur Warna Citra Kulit Pisang Menggunakan Metode Transformasi Ruang Warna HIS", JUITA, vol. 5 no. 1, pp.15-21, 2017, doi: 10.30595/juita.v5i1.1461.
Yogi, M., "Aplikasi Deteksi Kematangan Buah Semangka Berbasis Nilai RGB Menggunakan Metode Thresholding", JURIKOM, vol. 3 no. 6, pp. 84-89, 2016, doi: 10.30865/jurikom.v3i6.179.
Asshiddiqie, M., Rahmat, B. and Anggraeny, F., "Deteksi Tanaman Tebu Pada Lahan Pertanian Menggunakan Metode Convolutional Neural Network", JIFoSi, vol. 1 no. 1, pp. 229-237, 2020.
Maulana, F., and Rochmawati, N., "Klasifikasi Citra Buah Menggunakan Convolutional Neural Network", JINACS, vol. 01 no. 02, pp. 104-108, 2019.
Copyright (c) 2021 Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi)
This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright in each article belongs to the author
- The author acknowledges that the RESTI Journal (System Engineering and Information Technology) is the first publisher to publish with a license Creative Commons Attribution 4.0 International License.
- Authors can enter writing separately, arrange the non-exclusive distribution of manuscripts that have been published in this journal into other versions (eg sent to the author's institutional repository, publication in a book, etc.), by acknowledging that the manuscript has been published for the first time in the RESTI (Rekayasa Sistem dan Teknologi Informasi) journal ;