Analysis of Health Research Topics in Indonesia Using the LDA (Latent Dirichlet Allocation) Topic Modeling Method

Analisis Topik Penelitian Kesehatan di Indonesia Menggunakan Metode Topic Modeling LDA (Latent Dirichlet Allocation)

  • Yoga Sahria Universitas Islam Indonesia
  • Dhomas Hatta Fudholi Universitas Islam Indonesia
Keywords: Latent dirichlet allocation, modeling topic, coherence value

Abstract

In this time, the need of research, the development and the implementation of the result of research in health is increasing both from the researchers, the government, the academic even of from the public general. One of the ways to find out the health research trend is by topic modeling. The method that used in this research is topic modeling LDA (Latent Dirichlet Allocation) method. The purpose of this research is to identify how modeling topic method LDA analyze modeling topic to some health research in Indonesia by Sinta Journal and to know how the coherence value in each topic of the model that has been made. Besides, hopefully it can be used as a reference to do heath research in Indonesia based the topic that has been modeled. The development of this research uses Anaconda3 Python Programming Language Tools and utilizes the LDA library that provided to get the topic model. To examine the result of this research the respondent are medical worker, health researcher and academics. The result of this research the topic  modeling that used 94,1% respondent say very good and 5,9% say good.

Downloads

Download data is not yet available.

References

D. Prasanti, “Potret Media Informasi Kesehatan Bagi Masyarakat Urban di Era Digital,” J. IPTEKKOM J. Ilmu Pengetah. Teknol. Inf., vol. 19, no. 2, p. 149, 2018.

I. Arief and H. Handoko, Jurnal Online dengan Open Journal System. 2016.

P. Lakshmi Prasanna and D. Rajeswara Rao, “A text mining research based on topic modeling using latent dritchlent allocation,” Int. J. Recent Technol. Eng., vol. 7, no. 5, pp. 308–317, 2019.

B. Tieman, S. Narayanan, A. Sandy, and M. Sikorski, “MPICorrelator: A parallel code for performing time correlations,” Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip., vol. 649, no. 1, pp. 240–242, 2011.

C. Zou, “Analyzing research trends on drug safety using topic modeling,” Expert Opin. Drug Saf., vol. 17, no. 6, pp. 629–636, 2018.

K. B. Putra and R. P. Kusumawardani, “Analisis Topik Informasi Publik Media Sosial di Surabaya Menggunakan Pemodelan Latent Dirichlet Allocation (LDA),” J. Tek. ITS, vol. 6, no. 2, pp. 4–9, 2017.

I. Komputer, D. Ilmu, F. Matematik, P. Alam, and U. G. Mada, “Document Clustering Dengan Latent Dirichlet Allocation Dan Ward,” vol. V, no. September, 2018.

I. N. Kabiru, P. K. Sari, S. Prodi, and M. Bisnis, “Analisa Konten Media Sosial E-Commerce Pada Instagram Menggunakan Metode Sentimen Analysis Dan Lda-Based Topic Modeling (Studi Kasus : Shopee Indonesia ) Analysis Of Content Social Media E-Commerce In Instagram Using Sentiment Analysis And Lda Based Topki,” vol. 6, no. 1, pp. 12–19, 2019.

N. A. Bureau, T. Centre, F. Sciences, and Q. Laboratoire, “Q Uestioned D Ocument E Xamination,” vol. 8, no. 3, pp. 221–238, 2016.

P. M. Prihatini, I. K. Suryawan, and I. N. Mandia, “Metode Latent Dirichlet Allocation Untuk Ekstraksi Topik Dokumen,” J. Log., vol. 17, no. 3, pp. 154–158, 2017.

Zulhanif, Sudartianto, B. Tantular, and I. G. N. M. Jaya, “Aplikasi Latent Dirichlet Allocation ( Lda ) Pada Clustering Data Teks,” J. Log., vol. 7, no. 1, pp. 46–51, 2017.

A. Priyanto and M. R. Ma’arif, “Implementasi Web Scrapping dan Text Mining untuk Akuisisi dan Kategorisasi Informasi dari Internet (Studi Kasus: Tutorial Hidroponik),” Indones. J. Inf. Syst., vol. 1, no. 1, pp. 25–33, 2018.

D. M. Blei, A. Y. Ng, and M. I. Jordan, “Latent Dirichlet Allocation,” vol. 3, pp. 993–1022, 2003.

I. Surjandari, A. Rosyidah, Z. Zulkarnain, and E. Laoh, “Mining Web Log Data for News Topic Modeling Using Latent Dirichlet Allocation,” Proc. - 2018 5th Int. Conf. Inf. Sci. Control Eng. ICISCE 2018, pp. 331–335, 2019.

M. F. A. Bashri and R. Kusumaningrum, “Sentiment analysis using Latent Dirichlet Allocation and topic polarity wordcloud visualization,” 2017 5th Int. Conf. Inf. Commun. Technol. ICoIC7 2017, vol. 0, no. c, pp. 4–8, 2017.

Ministry of Health of Republic Indonesia, “General situation of HIV/AIDS and HIV test.” p. 12, 2018.

A. Candra, “Dengue Hemorrhagic Fever Epidemiology, Pathogenesis, and Its Transmission Risk Factors,” Aspirator J. Vector Borne Dis. Stud., vol. 2, no. 2, pp. 110–119, 2010.

Published
2020-04-20
How to Cite
Sahria, Y., & Dhomas Hatta Fudholi. (2020). Analysis of Health Research Topics in Indonesia Using the LDA (Latent Dirichlet Allocation) Topic Modeling Method. Jurnal RESTI (Rekayasa Sistem Dan Teknologi Informasi), 4(2), 336 - 344. https://doi.org/10.29207/resti.v4i2.1821
Section
Artikel Teknologi Informasi