Prediksi Harga Emas dengan Menggunakan Metode Naïve Bayes dalam Investasi untuk Meminimalisasi Resiko

  • Mohammad Guntur STMIK Bina Nusantara Jaya
  • Julius Santony Universitas Putra Indonesia “YPTK” Padang
  • Yuhandri Yuhandri Universitas Putra Indonesia “YPTK” Padang

Abstract

The high low price of gold influenced by many factors such as economic conditions, inflation rate, supply and demand and much more. The Naïve Bayes algorithm is capable of generating a classification that is used to predict future opportunities. By using the Naïve Bayes Classifier algorithm obtained a prediction of gold prices that can help decision makers in determining whether to sell or buy gold. By using the Naïve Bayes Classifier algorithm obtained a prediction of gold prices that can help decision makers in determining whether to sell or buy gold. Gold data will be processed using Rapidminer software. Stages of processing are reading training data, calculating the mean and standard deviation, entering the test data and finding the density value of gauss and then looking for probability value. Based on the calculation that has been done, Naïve Bayes Classifier method is able to predict the price of gold for 1 day ahead or every day. With the results of this calculation is expected to help gold investment actors in increasing accuracy to predict gold prices for decision making.

References

[1] Nugroho, D.S., 2015. Penerapan Algoritma Support Vector Machine untuk Prediksi Harga Emas, Jurnal Informasi UPGRIS, Vol. 1, hal 10.
[2] Mahena Y., Rusli M. dan Winarso E, 2015. Prediksi Harga Emas Dunia Sebagai Pendukung Keputusan Investasi Saham Emas Menggunakan Teknik Data Mining, Kalbiscentia,Vol. 2, No. 1, hal 37
[3] Dubey, A.D., 2016. Gold Price Prediction using Support Vector Regression and ANFIS models, ICCCI, Jan. 07 – 09, India.
[4] Prasetyo, E., 2012. Data Mining Konsep dan Aplikasi menggunakan Matlab. Penerbit Andi, Yogyakarta.
[5] Goel A., Gautum J. dan Kumar S., 2016. Real Time Sentiment Analysis of Tweets Using Naive Bayes, NGCT, 14-16 Oktober, Dehradun India.[6] Krishnaiah V., Narsimha G. dan Chandra N.S., 2013. Diagnosis of Lung Cancer Prediction System Using Data Mining Classification Techniques. IJCSIT, Vol. 4, No. 1.
[6] Alhaj B.A. dan Maghari A.Y.A., 2017. Predicting user entries by using data mining algorithms. PICICT.
[7] http://www.pegadaian.co.id/widgetHargaEmasv2.php Diakses pada tanggal 1 Desember 2017 sampai 10 Februari 2018
[8] Bhargava N., Sharma G., Bhargava R. dan Mathuria M., 2013. Decision Tree Analysis on J48 Algorithm for Data Mining, IJARCSSE, June - 2013, pp. 1114-1119.
[9] http://www.bi.go.id/id/moneter/informasi-kurs/transaksi-bi/Default.aspx Diakses pada tanggal 1 Desember 2017 sampai 10 Februari 2018
[10] Imron, M., 2017. Penerapan Data Mining Algoritma Naives Bayes Dan Part Untuk Mengetahui Minat Baca Mahasiswa Di Perpustakaan Stmik Amikom Purwokerto, Telematika, Vol. 10, No. 02.
[11] Sartika D. dan Sensuse D.I., 2017. Perbandingan Algoritma Klasifikasi Naive Bayes, Nearest Neighbour, dan Decision Tree pada Studi Kasus Pengambilan Keputusan Pemilihan Pola Pakaian, Jatisi, Vol. 1, No. 2.
[12] Desale K.S., Kumathekar C.N. dan Chavan A.P., 2015. Efficient Intrusion Detection System using Stream Data Mining Classification Technique, IEEE.
Published
2018-04-17
Section
Technology Information Article