Feature Selection in Classification of Blood Sugar Disease Using Particle Swarm Optimization (PSO) on C4.5 Algorithm

Seleksi Fitur pada Klasifikasi Penyakit Gula Darah Menggunakan Particle Swarm Optimization (PSO) pada Algoritma C4.5

  • Dwi Meylitasari Tarigan Universitas Sriwijaya
  • Dian Palupi Rini Universitas Sriwijaya
  • Samsuryadi Universitas Sriwijaya
Keywords: data mining, algoritma C4.5, Particle Swarm Optimization, PSO, klasifikasi

Abstract

Diabetes Mellitus (DM) is a disease caused by blood sugar level increased were higher than the maximum limit. Food consumed tends to contain uncontrolled sugar which could cause the drastic increase of blood sugar level. It is necessary to efforts, to increasing the public awareness to controlling blood sugar and the risks of increasing blood sugar level so as to determine of preventive and early detection measures One of used of data mining technique is information technology in the health sector which used a lot as a decision maker to predicting and diagnosing a several disease.  This research aims to optimizing the features on classification of the data mining with the C4.5 algorithm using Particle Swarm Optimization (PSO) to detect the blood sugar level in patient. The dataset used is the effect of physical activity to the Blood Sugar Level at H. Abdul Manan Simatupang Kisaran Regional Public Hospital.  The amount of dataset used is 42 record with 10 attributes.  The result of this research obtained that the Particle Swarm Optimization (PSO) may increasing the accuracy performance of C4.5 from 86% to 95%.  Whereas the evaluation result of the AUC Value increasing from 0,917 to 0,950. From those 10 attributes which are then selection with using PSO into 7 attributes used to determine the prediction of sugar level.  Therefore the Algorithm C4.5 using the Particle Swarm Optimization (PSO) may provide the best solution to the accuracy of detection blood sugar levels.

Downloads

Download data is not yet available.

References

Garnita, Dita., 2012. Faktor Risiko Diabetes Melitus di Indonesia (Analisis Data Sakerti.2007), Depok : FKM UI.

Arisman., 2011. Obesitas, Diabetes Melitus, dan Dislipidemia. Jakarta: EGC.

Krisnatuti & Yehrina., 2008. Diet Sehat untuk Penderita Diabetes Mellitus. Jakarta: Penebar Swadaya.

Tandra., 2009. Segala Sesuatu Yang Harus Anda Ketahui Tentang Diabetes. Jakarta: Kompas Gramedia.

Anani, S., Udiyono, A., Ginanjar, P., 2012. Hubungan antara Perilaku Pengendalian Diabetes dan Kadar Gula Darah Pasien Rawat Jalan Diabetes Melitus (Studi Kasus di RSUD Arjawinangun Kabupaten Cirebon). Jurnal Kesehatan Masyarakat, vol.1, pp.466-478.

Lakshmi, B.N., Raghunandhan, G.H., 2011. A conceptual overview of data mining. Proceedings of the National Conference on Innovations in Emerging Technology, pp. 27-32.

Wu H, Yang S, Huang Z, He J, Wang X. Type 2 diabetes mellitus prediction model based on data mining. Informatics Med Unlocked [Internet]. 2018; 10 (Februari 2020) : 100–7. Available from: https://doi.org/10.1016/j.imu.2017.12.006

Sisodia, DS. Prediction of Diabetes using Classification Algorithms. Procedia Comput Sci [Internet]. 2018. 132 (Iccids) : 1578–85. Available from: https://doi.org/10.1016/j.procs. 2018.05.122

Puspita Ari., 2016. Prediksi Kelahiran Bayi Secara Prematur dengan Menggunakan Algoritma C4.5 Berbasis Particle Swarm Optimization. Jurnal Teknik Informatika STMIK Antar Bangsa.Vol. II, pp.11-16.

Tejas Mehta, Dhaval Kathiriya., 2016. Performance Analysis of Data Mining Classification Techniques, International Journal of Innovative Research in Science, Engineering and Technology, ISSN : 2319-8753. Vol. 5, Issue 3,pp.3116-3122.

.Meng-Chang Tsai, Kun-Huang Chen, Chao-Ton Su, and Hung-Chun Lin. 2012 "An Application of PSO Algorithm and Decision Tree for Medical Problem," 2nd International Conference on Intelligent Computational Systems, pp. 124-126.

Kotsiantis, S. B., 2007. "Supervised Machine Learning: A Review of Classification Techniques," Department of Computer Science and Technology, pp. 249-268.

Daniel T.Larose., 2005. Discovering in Data Mining, An Introduction to Data Mining. Willey Interscience.

Rusda Wajhillah., 2014. Optimasi Algoritma Klasifikasi C4.5 berbasis Particle Swarm Optimization untuk Prediksi Penyakit Jantung. SWABUMI, Vol.1.

Sunjana., 2010. Klasifikasi Data Nasabah Sebuah Asuransi Menggunakan Algoritma C4.5, Seminar Nasional Aplikasi Teknologi Informasi, pp. D31-D34.

A. Abraham, C.Grosan and V.Ramos., 2006. Swarm Intelligence in Data Mining. Verlag Berlin Heidelberg: Springer.

Gorunescu, F., 2011. Data Mining Concepts, Models and Techniques. Verlag Berlin Heidelrbeg : Springe

Published
2020-06-20
How to Cite
Tarigan, D. M., Dian Palupi Rini, & Samsuryadi. (2020). Feature Selection in Classification of Blood Sugar Disease Using Particle Swarm Optimization (PSO) on C4.5 Algorithm. Jurnal RESTI (Rekayasa Sistem Dan Teknologi Informasi), 4(3), 569 - 575. https://doi.org/10.29207/resti.v4i3.1881
Section
Artikel Rekayasa Sistem Informasi