Sistem Pemeringkat Otomatis Berbasis Kata Sifat

  • Faisal Rahutomo Politeknik Negeri Malang
  • Diana Mayangsari Ramadhani Politeknik Negeri Malang
  • Inggrid Yanuar Risca Pratiwi Politeknik Negeri Malang
Keywords: rating system, automatic, semantic analysis, text processing, internet.

Abstract

This paper exposes a novel method has been developed during these 2 years. The method is named as “adjective based automatic rating system”. This method is developed to utilize the abundant availability of text on the internet for quality and performance rating purpose. The text is processed in such a way and leave only the adjectives. Semantic analysis is done by two knowledge: adjectives of performance definition and Indonesian adjectives database with its synonym-antonym relation. This research proposes several formula steps, therefore the method output is a rating score that can be tunned its scale. The experiment results have been gathered for several objects: tourism, courier service, and organization performance. With detail information in tourism object experiment, this paper cites the other experiment results as well. This paper also provides availability information of the method as Python library. The results show a high correlation score, always more than 0.9. The results also show acceptable error scores, never more than 45%.

Downloads

Download data is not yet available.

References

[1] D. Hutabarat, “Inilah rincian jumlah pelanggan prabayar masing-masing operator,” 2018. [Online]. Available: https://kominfo.go.id/content/detail/13131/inilah-rincian-jumlah-pelanggan-prabayar-masing-masing-operator/0/sorotan_media.
[2] Katadata.co.id, “Jumlah Penduduk Indonesia 2019 Mencapai 267 Juta Jiwa,” 2019. [Online]. Available: https://databoks.katadata.co.id/datapublish/2019/01/04/jumlah-penduduk-indonesia-2019-mencapai-267-juta-jiwa.
[3] B. Pan, T. MacLaurin, and J. C. Crotts, “Travel Blogs and the Implications for Destination Marketing,” J. Travel Res., vol. 46, no. 1, pp. 35–45, 2007.
[4] B. Pang and L. Lee, “Opinion Mining and Sentiment Analysis,” Found. Trends Inf. Retr., vol. 2, no. 1–2, pp. 1–135, Jan. 2008.
[5] M. Jabreel, A. Moreno, and A. Huertas, “Semantic comparison of the emotional values communicated by destinations and tourists on social media,” J. Destin. Mark. Manag., vol. 6, no. 3, pp. 170–183, 2017.
[6] D. M. Ramadhani, C. Rahmad, and F. Rahutomo, “Tourism destination pemeringkat system based on social media analysis (proposal and dataset development in Indonesian language),” in 2017 International Conference on Sustainable Information Engineering and Technology (SIET), 2017, pp. 41–46.
[7] F. Rahutomo, Z. H. R. Adi, I. F. Rozi, and P. Y. Saputra, “Implementasi Text Mining Pada Website/Blog Di Internet Untuk Menilai Kinerja Suatu Organisasi,” Inovtek Polbeng Seri Inform., vol. 3, no. 2, pp. 101–109, 2018.
[8] F. Rahutomo, I. P. Hidayati, P. Y. Saputra, I. F. Rozi, U. Nurhasan, and D. M. Ramadhani, “Automatic Pemeringkat System for National Delivery Services,” in 2018 International Conference on Applied Science and Technology (iCAST), 2018, pp. 226–230.

[9] M. E. R. Putra, F. Rahutomo, and Y. Pramitarini, “Pengembangan Library Sistem Pemeringkat Otomatis Berbasis Kata Sifat,” J. Inform., vol. 6, no. 2, 2019.
[10] M. E. R. Putra, F. Rahutomo, and Y. Pramitarini, “Sistem Pemeringkat Otomatis Berbasis Kata Sifat,” 2019. [Online]. Available: https://pypi.org/project/PySpoks/.
[11] M. E. R. Putra, F. Rahutomo, and Y. Pramitarini, “Library Sistem Pemeringkat Otomatis Berbasis Kata Sifat,” 2019. [Online]. Available: https://github.com/ElfanRodh/PySpoks.
[12] E. Costa et al., “A framework for building web mining applications in the world of blogs: A case study in product sentiment analysis,” Expert Syst. Appl., vol. 39, no. 5, pp. 4813–4834, 2012.
[13] G. A. Miller, “WordNet: A Lexical Database for English,” Commun. ACM, vol. 38, no. 11, pp. 39–41, Nov. 1995.
[14] F. Rahutomo and E. Rohadi, “Pengembangan Piranti Penelitian Sistem Temu Kembali Informasi Bahasa Indonesia,” in Seminar Nasional Sistem Informasi Indonesia (SESINDO), 2015, pp. 313–319.
[15] D. Zamzami, F. Rahutomo, and D. Puspitasari, “Aplikasi Wordnet Indonesia Berdasarkan Kamus Thesaurus Bahasa Indonesia menggunakan Algoritma Rule Based Text Parsing,” in Seminar Informatika Aplikatif Polinema, 2016.
[16] P. Bahasa, Kamus Tesaurus Bahasa Indonesia. Departemen Pendidikan Nasional, 2008.
Published
2019-08-09
Section
Artikel Teknologi Informasi