Perbandingan Akurasi Pengenalan Jenis Beras dengan Algoritma Propagasi Balik pada Beberapa Resolusi Kamera

  • David Ricardo STMIK Global Informatika MDP
  • Gasim gasim STMIK Global Informatika MDP
Keywords: Rice, Recognition, Camera Resolution, GLCM, Artificial Neural Networks

Abstract

Rice is a staple that is cooked so that it becomes rice for daily consumption. The type of rice that is often used for daily consumption is white rice. There are several types of white rice circulating in the market that are consumed by the public. Each type of rice gives different scent, taste and price. This study compares the accuracy of white rice type recognition based on several camera resolutions. The types of rice used in this study are Jawa Barat rice, Jawa Timur rice, Pandan Wangi rice, Thailand rice and Vietnam rice. The camera resolution used is 5MP, 8 MP, 12 MP, 14 MP, and 16MP. The shooting distance used is ± 9 cm between the camera and the object of rice. The recognition method used is BackPropagation Artificial Neural Networks, while for feature extraction using the Gray Level Co-occurrence Matrix (GLCM) which consists of contrast, energy, homogeneity, and correlation. The highest results obtained at 12 MP camera resolution with the results of the recognition of 25 of 50 test data and the results of the calculation with confusion matrix obtained an average accuracy of 82%, precision of 55%, and recall of 50%. The results of this study can be used as a reference for research that uses objects of similar character, or further research with the same object in developing applications that are ready to use.

Downloads

Download data is not yet available.

References

2019) Tersedia di :https://upload.wikimedia.org/wikipedia/commons/4/43/Mina_padi_java_Pj_IMG-20150313-WA0004.jpg
[2] Oryza sativa L.,2019. Rice. [Online] (Update 22 Feb 2019)
Tersedia di : https://www.shajithdarshana.com/2013/07/oryza-sativa-l-rice.html
[3] Sutojo T, Mulyanto E, dan Vincent, 2010.Kecerdasan Buatan. Yogyakarta: Andi Offset.
[4] Agmalaro MA, Kustiyo A, dan Akbar AR., 2013.Identifikasi Tanaman Buah Tropika Berdasarkan Tekstur Permukaan Daun Menggunakan Jaringan Syaraf Tiruan. Jurnal Ilmu Komputer Agri-Informatika,2(2), pp.73-82.
doi:http://dx.doi.org/10.29244/jika.2.2.73-82
[5] Adnan, Suhartini, Kusbiantoro B, 2013. Identifikasi Varietas Berdasarkan Warna dan Tekstur Permukaan Beras Menggunakan Pengolahan Citra Digital dan Jaringan Syaraf Tiruan. Jurnal Penelitian Pertanian Tanaman Pangan, 32(2), pp.91-97.
[6] Wiharja PW, Harjoko A., 2014.Pemrosesan Citra Digital untuk Klasifikasi Mutu Buah Pisang Menggunakan Jaringan Saraf Tiruan. Indonesian Journal of Electronics and Instrumentations System (IJEIS), 4(4), pp.57-68.
doi:https://doi.org/10.22146/ijeis.4222
[7] Deswari D, Hendrick M, dan Derisma M., 2013.Identifikasi Kematangan Buah Tomat Menggunakan Metoda Backpropagation. [Online]( Update 22 Feb 2019)
Tersedia di : http://repo.unand.ac.id/id/eprint/269
[8] Rahmanti FZ, Adi PW, Ataka I, dan Sukmana SE., 2016. Pengembangan Tahapan Klasifikasi Apel Envy dan Pasific Rose Menggunakan Jaringan Saraf Tiruan. Jurnal Nasional Teknik Elektro (JNTE), 5(2), pp.237-243. Doi:10.20449/jnte.v5i2.283
[9] Octavia M, Jessyln, dan Gasim, 2016, Perbandingan Tingkat Akurasi Jenis Citra Keabuan, HSV, dan L*a*b pada Identifikasi Jenis Buah Pir. Jurnal Ilmiah Informatika Global, 7(1), pp.7-11.http://ejournal.uigm.ac.id/index.php/IG/article/view/143
[10] Syaban K, dan Harjoko A., 2016, Klasifikasi Varietas Cabai Berdasarkan Morfologi Daun Menggunakan Backpropagation Neural Network. Indonesian Journal of Computing and Cybernetics System (IJCCS), 10(2), pp. 161-172. doi:https://doi.org/10.22146/ijccs.16628
[11] Somantri AS., 2010, Menentukan Klasifikasi Mutu Fisik Beras dengan Menggunakan Teknologi Pengolahan Citra Digital dan Jaringan Syaraf Tiruan. Jurnal Standardisasi, 12(3), pp.162-173. doi:http://dx.doi.org/10.31153/js.v12i3.154
[12] Qoriah R, 2017.Identifikasi Jenis Beras Menggunakan Metode Backpropagation neuron network. [Online](Update 24Feb 2019)
Tersedia di : http://eprints.akakom.ac.id/5943
[13] C.S. Silva and U. Sonnadara, 2013. Classification of Rice Grains Using Neural Networks, in Proceedings of Technical Sessions.
[14] J.D. Guzman and E.K. Peralta, 2008. Classification of Philippine Rice Grains Using Machine Vision and Artificial Neural Networks, World conference on agricultural information and IT, IAALD AFITA WCCA.
[15] D. Morrow. 2019.Camera Sensor Size Photography Guide. [Online](Update 22 Feb 2019)
Tersedia di :https://www.davemorrowphotography.com/camera-sensor-size-guide
[16] H. Tiarks. 2019. CCD vs. CMOS: What Are the New Trends?. [Online](Update 22 Feb 2019)
Tersedia di: https://www.baslerweb.com/en/vision-campus/camera-technology/cmos-ccd-technology
[17] CML. Burnett. 2006. Cross-Section of a Bayer Filter. [Online] (Update 22 Feb 2019)
Tersedia di :
https://commons.wikimedia.org/wiki/File:Bayer_pattern_on_sensor_profile.svg
[18] J. Lin, L. Zhu, Z. Chen and X. Chen, 2015, Objective Quality Assessment for Image Retargeting Based on Hybrid Distortion Pooled Model,Seventh International Workshop on Quality of Multimedia Experience (QoMEX), Pylos-Nestoras. pp. 1-6, doi: 10.1109/QoMEX.2015.7148090
[19] Mathworks Inc., 2018.Graycoprops. [Online] ( Update 23 Feb 2019)
Tersedia di :
https://www.mathworks.com/help/images/ref/graycoprops.html
Published
2019-08-01
Section
Artikel Teknologi Informasi