Analisis Perbandingan Perbaikan Kualitas Citra Pada Motif Batik Dengan Konsep Deteksi Tepi Robert, Sobel, Canny Menggunakan Metode Morfologi

  • Muhammad Abrar Masril upi yptk padang
Keywords: Robert Operator, Sobel Operator, Canny Operator, Edge Detection, Dilation Morphology


Image results from quality edge detection are not optimal. From these problems a method is needed to improve the image quality of edge detection. The method used is Dilation Morphology on the results of edge detection of batik patterns. The results of testing the improved image quality of edge detection 10 batik patterns using Dilation Morphology show that Canny operators are able to produce very high accuracy from operators Robert and Sobel, with the percentage of Canny operators is 80%. While Robert operators with a percentage of 40% and Sobel operators 60%. The application of Dilation Morphology to operators Robert, Sobel and Canny can improve image quality of edge detection and improve accuracy in batik patterns.


Download data is not yet available.


[1] Lukman Heryawan. (2016). Deteksi Dini Retinopati dengan Pengolahan Citra Berbasis Morfologi Matematika. IJCCS, Vol. 11, No.2, july 2017, pp. 209-218.
[2] Ding, J.-J., Wang, N.-C., Chuang, S.-C., & Chang, R. Y. (2016). Morphology-based disparity estimation and rendering algorithm for light field images. 2016 IEEE International Conference on Consumer Electronics-Taiwan (ICCE-TW). doi:10.1109/icce-tw.2016.7521050.
[3] Pal, S., & Chatterjee, S. (2017). Mathematical morphology aided optic disk segmentation from retinal images. 2017 3rd International Conference on Condition Assessment Techniques in Electrical Systems (CATCON) .doi:10.1109/catcon.2017.8280249
[4] Said, K. A. M., & Jambek, A. B. (2016). A study on image processing using mathematical morphological. 2016 3rd International Conference on Electronic Design (ICED).doi:10.1109/iced.2016.7804697.
[5] Rahman, A. N., Heriana, O., Putranto, P., Darwis, F., Pristianto, E. J., & Wijayanto, Y. N. (2017). Morphological dilation for radar image enhancement. 2017 International Conference on Radar, Antenna, Microwave, Electronics, and Telecommunications (ICRAMET). doi:10.1109/icramet.2017.8253147.
[6] John, J. V., Raji, P. G., Radhakrishnan, B., & Suresh, L. P. (2017). Automatic number plate localization using dynamic thresholding and morphological operations. 2017 International Conference on Circuit ,Power and Computing Technologies (ICCPCT).doi:10.1109/iccpct.2017.8074328.
[7] Reddy, G. B., & Anusudha, K. (2016). Implementation of image edge detection on FPGA using XSG. 2016 International Conference on Circuit, Power and Computing Technologies (ICCPCT).doi:10.1109/iccpct.2016.7530374.
[8] Mohamad, A. S., Hamzah, R., Mokhtar, A. S., & Sathar, J. (2017). Sickle cell disease verification via sobel edge algorithms for image processing. 2017 International Conference on Engineering Technology and Technopreneurship (ICE2T).doi:10.1109/ice2t.2017.8215994.
[9] Goel, K., Sehrawat, M., & Agarwal, A. (2017). Finding the optimal threshold values for edge detection of digital images & comparing among Bacterial Foraging Algorithm, canny and Sobel Edge Detector. 2017 International Conference on Computing, Communication and Automation (ICCCA).doi:10.1109/ccaa.2017.8229955.
[10] Pawar, K. B., & Nalbalwar, S. L. (2016). Distributed canny edge detection algorithm using morphological filter. 2016 IEEE International Conference on Recent Trends in Electronics, Information & Communication Technology (RTEICT).doi:10.1109/rteict.2016.7808087.
[11] Yuhandri, Madenda, Wibowo, Karmilasari. (2017). Object Feature Extraction of Songket Image Using Chain Code Algorithm. 2017 Internasional Journal on Advanced Science Engineering Information Technology . doi: 10.18517/ijaseit.7.1.1479.
[12] Na’am J., Harlan J., Nercahyo G.W, Arlis S., Sahari, Mardison, Rani L.N . (2017). Detection of Infiltrate on Infact Chest X-Ra . TELKOMNIKA, Vol.15, No.4, December 2017, pp. 1943~1951. doi: 10.12928/TELKOMNIKA.v15i4.3163.
[13] Na`am J., (2017). Accuracy of Panoramic Dental X-Ray Imaging in Detection of Proximal Caries with Multiple Morpological Gradient (mMG) Method. Joiv Internasional Journal On Informatics Visualization. doi= 10.30630/joiv.1.1.13
Artikel Teknologi Informasi