Face Dermatological Disorder Identification with YoloV5 Algorithm

  • Ayu Wirdiani Universitas Udayana
  • Lennia Savitri Azzahra Lofiana Universitas Udayana
  • I Putu Arya Dharmadi Universitas Udayana
  • Oka Sudana Universitas Udayana
Keywords: computer vision, image enhancement, mean average precision, skin problems, YoloV5

Abstract

Dermatological disorders are common in humans. The accurate identification of skin diseases is paramount for determining the most efficacious treatment. This system can screen images of skin diseases on the face and provide analysis results in the form of object detection. Dermatological disorders of the face are classified into six categories: acne nodules, melasma, filiform warts, milia, papules, and pustules. The YoloV5 algorithm was selected because of its effectiveness in live-detection tasks. The image-enhancement process involves the implementation of two methodologies: sharpening and histogram equalization. The former adjusts the brightness values whereas the latter adjusts the contrast values. The dataset comprised 1,223 images of skin diseases, with 947 images allocated for training and 276 for validation. The optimal mAP of the filiform wart class was determined to be 87.6%, with values of 76.7% for pustules, 72% for papules, 71% for milia, 68% for nodules, and 38.2% for melasma, representing the lowest value. The low mAP of melasma was attributed to the abstract image data type and complexity of localization. The congruence of object features and disparity in data variance has the potential to influence outcomes.

Downloads

Download data is not yet available.

References

S. K. Patnaik, M. S. Sidhu, Y. Gehlot, B. Sharma, and P. Muthu, “Automated skin disease identification using deep learning algorithm,” Biomed. Pharmacol. J., vol. 11, no. 3, pp. 1429–1436, 2018, doi: 10.13005/bpj/1507.

H. W. Lim et al., “The burden of skin disease in the United States,” J. Am. Acad. Dermatol., vol. 76, no. 5, pp. 958-972.e2, May 2017, doi: 10.1016/j.jaad.2016.12.043.

Santhosh Kumar, C., Amritha Devangana, K., Abirami, P.L., Prasanna, M., Hari Aravind, S. (2023). Identification and Classification of Skin Diseases with Erythema Using YOLO Algorithm. In: Yadav, A., Nanda, S.J., Lim, MH. (eds) Proceedings of International Conference on Paradigms of Communication, Computing and Data Analytics. PCCDA 2023. Algorithms for Intelligent Systems. Springer, Singapore. https://doi.org/10.1007/978-981-99-4626-6_49.

A. Aziz and K. Karpen, “Diagnosa Penyakit Kulit Wajah Menggunakan Metode Decission Tree Dan Algoritma C4.5,” J. Teknol. dan Open Source, vol. 2, no. 1, pp. 74–86, 2019, doi: 10.36378/jtos.v2i1.148.

W. N. Aini, N. Hidayah, and N. S. S. Ambarwati, “Pengurangan Jerawat Pada Kulit Wajah dengan Madu Manuka,” Pros. Semin. Nas. dan Call Pap., vol. 9, no. 1, 2019.

E. Malgina and M.-A. Kurochkina, “Development of the Mobile Application for Assessing Facial Acne Severity from Photos,” in 2021 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (ElConRus), Jan. 2021, pp. 1790–1793, doi: 10.1109/ElConRus51938.2021.9396382.

M. S. Junayed et al., “AcneNet - A deep CNN based classification approach for acne classes,” 2019, doi: 10.1109/ICTS.2019.8850935.

S. Bekmirzaev, S. Oh, and S. Yo, “RethNet: Object-by-object learning for detecting facial skin problems,” 2019, doi: 10.1109/ICCVW.2019.00054.

N. A. M. Isa and N. N. A. Mangshor, “Acne Type Recognition for Mobile-Based Application Using YOLO,” J. Phys. Conf. Ser., vol. 1962, no. 1, p. 012041, Jul. 2021, doi: 10.1088/1742-6596/1962/1/012041.

S. Wulan Dari and J. Triloka, “Kajian Algoritme Mask Region-Based Convolutional Neural Network (Mask R-CNN) dan You Look Only Once (YOLO) Untuk Deteksi Penyakit Kulit Akibat Infeksi Jamur,” Semin. Nas. Has. Penelit. dan Pengabdi. Masy., 2022.

S. Banerjee, S. K. Singh, A. Chakraborty, A. Das, and R. Bag, “Melanoma diagnosis using deep learning and fuzzy logic,” Diagnostics, vol. 10, no. 8, 2020, doi: 10.3390/diagnostics10080577.

S. Banerjee, S. K. Singh, A. Das, and R. Bag, “Diagnoses of Melanoma Lesion Using YOLOv3,” in Lecture Notes in Electrical Engineering, 2022, vol. 786, doi: 10.1007/978-981-16-4035-3_26.

L. F. Li, X. Wang, W. J. Hu, N. N. Xiong, Y. X. Du, and B. S. Li, “Deep Learning in Skin Disease Image Recognition: A Review,” IEEE Access, vol. 8, 2020, doi: 10.1109/ACCESS.2020.3037258.

Q. Aini, N. Lutfiani, H. Kusumah, and M. S. Zahran, “Deteksi dan Pengenalan Objek Dengan Model Machine Learning: Model Yolo,” CESS (Journal Comput. Eng. Syst. Sci., vol. 6, no. 2, p. 192, 2021, doi: 10.24114/cess.v6i2.25840.

D. H. Fudholi, A. Kurniawardhani, G. I. Andaru, A. A. Alhanafi, and N. Najmudin, “YOLO-based Small-scaled Model for On-Shelf Availability in Retail,” J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 8, no. 2, pp. 265–271, 2024, doi: 10.29207/resti.v8i2.5600.

Wirdiani, Ayu; Darma Putra, I Ketut Gede; Sudarma, Made; Sari Hartati, Rukmi; Savitri Azzahra Lofiana, “Real-time Face Recognition System Using Deep Learning Method,” Lontar Komput. J. Ilm. Teknol. Inf., vol. 14, no. 1, pp. 62–70, 2023, doi: https://doi.org/10.24843/LKJITI.2023.v14.i01.p06

L. You, Y. Ke, H. Wang, W. You, B. Wu, and X. Song, “Small traffic sign detection and recognition in high-resolution images,” in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2019, vol. 11518 LNCS, doi: 10.1007/978-3-030-23407-2_4.

A. N. Kadhum and A. N. Kadhum, “Literature Survey on YOLO Models for Face Recognition in Covid-19 Pandemic,” J. Image Process. Intell. Remote Sens., no. 34, 2023, doi: 10.55529/jipirs.34.27.35.

Mohammad Chasrun Hasani, Fadhila Milenasari, and N. Setyawan, “Pemantauan Physical Distance Pada Area Umum Menggunakan YOLO Tiny V3,” J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 6, no. 1, pp. 146–152, 2022, doi: 10.29207/resti.v6i1.3808.

J. Ma, C. Hu, P. Zhou, F. Jin, X. Wang, and H. Huang, “Review of Image Augmentation Used in Deep Learning-Based Material Microscopic Image Segmentation,” Appl. Sci., 2023, doi: 10.3390/app13116478.

F. W. Gandhi and L. Lina, “Pengenalan Jenis Maker Dengan Metode Color Histogram Dan Euclidean Distance,” J. Ilmu Komput. dan Sist. Inf., vol. 9, no. 2, p. 18, 2021, doi: 10.24912/jiksi.v9i2.13100.

C. P. Beauty and Y. A. Sari, “Temu Kembali Citra Makanan Menggunakan Color Histogram Dan Local Binary Pattern,” J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 3, no. 6, pp. 5514–5520, 2019.

I. W. Prastika and E. Zuliarso, “DETEKSI PENYAKIT KULIT WAJAH MENGGUNAKAN TENSORFLOW DENGAN METODE CONVOLUTIONAL NEURAL NETWORK,” J. Manaj. Inform. dan Sist. Inf., vol. 4, no. 2, 2021, doi: 10.36595/misi.v4i2.418.

Z. Ren, K. Qian, Z. Zhang, V. Pandit, A. Baird and B. Schuller, "Deep Scalogram Representations for Acoustic Scene Classification," in IEEE/CAA Journal of Automatica Sinica, vol. 5, no. 3, pp. 662-669, May 2018, doi: 10.1109/JAS.2018.7511066.

H. M. Ünver and E. Ayan, “Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm,” Diagnostics, vol. 9, no. 3, 2019, doi: 10.3390/diagnostics9030072.

Published
2025-07-25
How to Cite
Ayu Wirdiani, Lennia Savitri Azzahra Lofiana, I Putu Arya Dharmadi, & Oka Sudana. (2025). Face Dermatological Disorder Identification with YoloV5 Algorithm . Jurnal RESTI (Rekayasa Sistem Dan Teknologi Informasi), 9(4), 721 - 728. https://doi.org/10.29207/resti.v9i4.6237
Section
Artificial Intelligence