Comparative Evaluation of Preprocessing Methods for MobileNetV1 and V2 in Waste Classification
Abstract
Waste management remains a critical challenge for many countries, including Indonesia, which ranks as the world's second-largest contributor of waste. As tens of millions of tons are produced each year and the management system remains ineffective, environmental conditions and public health continue to deteriorate. To address this issue, it is imperative to develop more accurate and efficient solutions to enhance waste classification and management. This study investigates the influence of various image preprocessing techniques on the performance of MobileNetV1 and MobileNetV2 models in the classification of waste images. Preprocessing is crucial for enhancing data quality, particularly when dealing with real-world images that are affected by inconsistent lighting, texture, and clarity. Five preprocessing scenarios were evaluated: Baseline, CLAHE with Bilateral Filtering, CLAHE with Sharpening, Grayscale with CLAHE, and Gaussian Blur with Bilateral Filtering. Among these, the combination of CLAHE and Bilateral Filtering applied to MobileNetV1 achieved the best results, with 85% training accuracy, 96% validation accuracy, a training loss of 0.3178, and the lowest validation loss of 0.1630. Overall, MobileNetV1 benefited more significantly from preprocessing variations than MobileNetV2, particularly in terms of accuracy improvement and reduction in prediction error. These findings underscore the importance of effective preprocessing in enhancing model performance for waste image classification.
Downloads
References
A. P. Alphita and P. O. N. Saian, “Pengembangan Aplikasi Edukasi Pengelolaan Sampah Untuk Anak Sekolah Dasar Berbasis Mobile Dengan Teknologi Machine Learning,” IT-Explore J. Penerapan Teknol. Inf. dan Komun., vol. 2, no. 1, 2023, doi: 10.24246/itexplore.v2i1.2023.pp1-17.
Kartiko, A. Prima Yudha, N. Dimas Aryanto, and M. Arya Farabi, “Klasifikasi sampah menggunakan Convolutional Neural Network,” Indones. J. Data Sci., vol. 3, no. 2, pp. 72–81, 2022, doi: 10.56705/ijodas.v3i2.33.
M. Akbar, S. D. Anjasmara, and K. D. K. Wardhani, “Rancang Bangun Alat Pendeteksi Sampah Organik dan Anorganik Menggunakan Sensor Proximity dan NodeMCU ESP8266,” J. Komput. Terap., vol. 7, no. 2, 2021, doi: 10.35143/jkt.v7i2.5178.
R. Kurniawan, P. B. Wintoro, Y. Mulyani, and M. Komarudin, “Implementasi Arsitektur Xception Pada Model Machine Learning Klasifikasi Sampah Anorganik,” J. Inform. dan Tek. Elektro Terap., vol. 11, no. 2, 2023, doi: 10.23960/jitet.v11i2.3034.
Sistem Informasi Pengelolaan Sampah Nasional, “Sistem Informasi Pengelolaan Sampah Nasional: Timbulan Sampah.”
M. H. Laia, “Analisis Penanggulangan Sampah Plastik di Desa Sirofi Kecamatan Amandraya Kabupaten Nias Selatan,” FAGURU J. Ilm. Mhs. Kegur., vol. 3, no. 1, 2024, doi: https://doi.org/10.57094/faguru.v3i1.1257.
R. N. Bustan, M. D. Irawan, N. F. R. Haryanto, and P. Syafitri, “Pengadaan Tempat Pembuangan Sampah Sementara (TPS) Sebagai Upaya Mewujudkan Kampung Bersih,” Surya Abdimas, vol. 6, no. 4, 2022, doi: 10.37729/abdimas.v6i4.2326.
Fathoni Dwiatmoko, D. Utami, and Nuari Anisa Sivi, “Klasifikasi Citra Sampah Organik dan Non Organik Menggunakan Algoritma CNN (Convolutional Neural Network),” Explore, vol. 14, no. 1, 2024, doi: 10.35200/ex.v14i1.103.
J. Nuariputri, Maimunah, and P. Sukmasetya, “Klasifikasi Jenis Sampah Menggunakan Base ResNet-50,” J. Ilm. Komputasi, vol. 22, no. 3, 2023, doi: 10.32409/jikstik.22.3.3380.
A. N. Sihananto, M. M. Al Haromainy, and A. P. Sari, “Pemilahan Jenis Sampah Menggunakan Algoritma CNN,” Scan J. Teknol. Inf. dan Komun., vol. 17, no. 3, 2023, doi: 10.33005/scan.v17i3.3523.
W. Vidiadivani and I. K. G. Suhartana, “Klasifikasi Jenis Sampah Menggunakan Metode Transfer Learning Pada Convolutional Neural Network (CNN),” JELIKU (Jurnal Elektron. Ilmu Komput. Udayana), vol. 12, no. 3, 2024, doi: 10.24843/jlk.2023.v12.i03.p11.
Ety Sutanty, Maukar, Dina Kusuma Astuti, and Handayani, “Penerapan Model Arsitektur VGG16 Untuk Klasifikasi Jenis Sampah,” Decod. J. Pendidik. Teknol. Inf., vol. 3, no. 2, 2023, doi: 10.51454/decode.v3i2.331.
S. M. Saqib et al., “Cataract and glaucoma detection based on Transfer Learning using MobileNet,” J. Heliyon, 2024, doi: https://doi.org/10.1016/j.heliyon.2024.e36759.
M. M. Mijwil, R. Doshi, K. K. Hiran, O. J. Unogwu, and I. Bala, “MobileNetV1-Based Deep Learning Model for Accurate Brain Tumor Classification,” Mesopotamian J. Comput. Sci., 2023, doi: 10.58496/mjcsc/2023/005.
E. Suharto, Suhartono, A. P. Widodo, and E. A. Sarwoko, “The use of mobilenet v1 for identifying various types of freshwater fish,” in Journal of Physics: Conference Series, 2020. doi: 10.1088/1742-6596/1524/1/012105.
T. Ghosh et al., “Bangla handwritten character recognition using mobilenet v1 architecture,” Bull. Electr. Eng. Informatics, vol. 9, no. 6, 2020, doi: 10.11591/eei.v9i6.2234.
L. Farokhah and S. Y. Riska, “Analysis and Development of Eight Deep Learning Architectures for the Classification of Mushrooms,” JURNALRESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 8, no. 1, pp. 142–149, 2024, doi: https://doi.org/10.29207/resti.v8i1.5498.
A. R. Fahcruroji, Madona Yunita Wijaya, and Irma Fauziah, “Implementasi Algoritma CNN MobileNet untuk Klasifikasi Gambar Sampah di Bank Sampah,” PROSISKO J. Pengemb. Ris. dan Obs. Sist. Komput., vol. 11, no. 1, 2024, doi: 10.30656/prosisko.v11i1.8101.
M. R. A. Yudianto, P. Sukmasetya, R. A. Hasani, and D. Sasongko, “Pengaruh Data Preprocessing terhadap Imbalanced Dataset pada Klasifikasi Citra Sampah menggunakan Algoritma Convolutional Neural Network,” Build. Informatics, Technol. Sci., vol. 4, no. 3, p. 1367−1375, 2022, doi: https://doi.org/10.47065/bits.v4i3.2575.
R. M. Diar, R. Y. N. Fu’Adah, and K. Usman, “Klasifikasi Penyakit Paru-Paru Berbasis Pengolahan Citra X Ray Menggunakan Convolutional Neural Network (Classification Of The Lung Diseases Based On X Ray Image Processing Using Convolutional Neural Network),” e-Proceeding Eng., vol. 9, no. 2, 2022.
S. Z. M. Zaki, M. A. Zulkifley, M. Mohd Stofa, N. A. M. Kamari, and N. A. Mohamed, “Classification of tomato leaf diseases using mobilenet v2,” IAES Int. J. Artif. Intell., vol. 9, no. 2, 2020, doi: 10.11591/ijai.v9.i2.pp290-296.
R. Indraswari, R. Rokhana, and W. Herulambang, “Melanoma image classification based on MobileNetV2 network,” in Procedia Computer Science, 2021. doi: 10.1016/j.procs.2021.12.132.
A. Souid, N. Sakli, and H. Sakli, “Classification and predictions of lung diseases from chest x‐ rays using mobilenet v2,” Appl. Sci., vol. 11, no. 6, 2021, doi: 10.3390/app11062751.
L. Yong, L. Ma, D. Sun, and L. Du, “Application of MobileNetV2 to waste classification,” PLoS One, vol. 18, no. 3 March, 2023, doi: 10.1371/journal.pone.0282336.
Kusrini, M. R. A. Yudianto, and H. Al Fatta, “The effect of Gaussian filter and data preprocessing on the classification of Punakawan puppet images with the convolutional neural network algorithm,” Int. J. Electr. Comput. Eng., vol. 12, no. 4, pp. 3752–3761, 2022, doi: 10.11591/ijece.v12i4.pp3752-3761.
U. Kuran and E. C. Kuran, “Parameter selection for CLAHE using multi-objective cuckoo search algorithm for image contrast enhancement,” Intell. Syst. with Appl., vol. 12, 2021, doi: 10.1016/j.iswa.2021.200051.
A. A. M. Abid Ali, M. I. Dohan, and S. K. Musluh, “Denoising of image using bilateral filtering in multiresolution,” APTIKOM J. Comput. Sci. Inf. Technol., vol. 3, no. 1, 2018, doi: 10.34306/csit.v3i1.76.
D. Wang, T. Gao, and Y. Zhang, “Image Sharpening Detection Based on Difference Sets,” IEEE Access, vol. 8, 2020, doi: 10.1109/ACCESS.2020.2980774.
Z. N. Khudhair et al., “Color to Grayscale Image Conversion Based on Singular Value Decomposition,” IEEE Access, vol. 11, 2023, doi: 10.1109/ACCESS.2023.3279734.
T. G. Devi, N. Patil, S. Rai, and C. S. Philipose, “Gaussian Blurring Technique for Detecting and Classifying Acute Lymphoblastic Leukemia Cancer Cells from Microscopic Biopsy Images,” Life, vol. 13, no. 2, 2023, doi: 10.3390/life13020348.
N. Alduaiji, A. Algarni, S. Abdalaha Hamza, G. Abdel Azim, and H. Hamam, “A Lightweight CNN and Class Weight Balancing on Chest X-ray Images for COVID-19 Detection,” Electron., vol. 11, no. 23, 2022, doi: 10.3390/electronics11234008.
M. F. Wijayanto, D. Swanjaya, and Resty Wulanningrum, “Penerapan MobileNet Architecture pada Identifikasi Foto Citra Makanan Indonesia,” Digit. Transform. Technol., vol. 4, no. 1, 2024, doi: 10.47709/digitech.v4i1.4449.
Copyright (c) 2025 Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi)

This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright in each article belongs to the author
- The author acknowledges that the RESTI Journal (System Engineering and Information Technology) is the first publisher to publish with a license Creative Commons Attribution 4.0 International License.
- Authors can enter writing separately, arrange the non-exclusive distribution of manuscripts that have been published in this journal into other versions (eg sent to the author's institutional repository, publication in a book, etc.), by acknowledging that the manuscript has been published for the first time in the RESTI (Rekayasa Sistem dan Teknologi Informasi) journal ;