Identifying Rice Plant Damage Due to Pest Attacks Using Convolutional Neural Networks

  • Andi Tenriola Universitas Negeri Makassar
  • Putri Alysia Azis Universitas Negeri Makassar
  • Andi Baso Kaswar Universitas Negeri Makassar
  • Fhatiah Adiba Universitas Negeri Makassar
  • Dyah Darma Andayani Universitas Negeri Makassar
Keywords: convolutional neural networks, rice, stem borer pest

Abstract

Rice (Oryza Sativa) is an important crop for meeting global food needs; however, one of the main challenges in its cultivation is the attack of stem borer pests, which can cause significant damage. This study aims to identify the damage caused by these pest attacks using Convolutional Neural Networks (CNN) methods. We developed and trained several CNN architectures, including the proposed architecture, MobileNet, and EfficientNetB0, to detect pest attacks on rice. The dataset used consists of 700 images per class taken directly from the field, where the images depict rice plants that have been peeled or opened to inspect for the presence of pests, specifically stem borer pests. To enhance the quality and diversity of the dataset, we applied a rigorous selection process, ensuring that only high-quality images were used. Additionally, augmentation techniques such as rotation were employed to expand the dataset to 2000 images per class. Labeling was carried out carefully to ensure that each image accurately reflected the condition of the pest attack. The results of the study indicate that the proposed CNN model can identify damage with high accuracy, thereby contributing to efforts to increase rice production through early detection of pest attacks using computer vision technology.

Downloads

Download data is not yet available.

References

N. Sunandar and J. Sutopo, “Pemanfaatan Artificial Neural Network Terhadap Klasifikasi Penyakit Tanaman Padi Menggunakan Citra Daun,” Jurnal Sains Komputer & Informatika, vol. 8, Mar. 2024, doi: http://dx.doi.org/10.30645/j-sakti.v8i1.

N. Dominic, T. W. Cenggoro, and B. Pardamean, “Systematic Literature Review on Statistics and Machine Learning Predictive Models for Rice Phenotypes,” in Procedia Computer Science, Elsevier B.V., 2023, pp. 1054–1061. doi: 10.1016/j.procs.2023.10.615.

X.-R. Li et al., “Journal of Integrative Agriculture Strategies for improving crop comprehensive benefits via a decision-making system based on machine learning of rice-rape, rice-wheat and rice-garlic rotation systems in Southwest China”, doi: https://doi.org/10.1016/j.jia.2023.10.005.

Badan Pusat Statistik, “Produksi Padi Tahun 2021 Turun 0,43 persen (Angka Tetap),” Badan Pusat Statistik. Accessed: Mar. 29, 2024. [Online]. Available: https://www.bps.go.id/id/pressrelease/2022/03/01/1909/produksi-padi-tahun2021-turun-0-43-persen--angka-tetap-.html

Badan Pusat Statistik, “Pada 2022, luas panen padi mencapai sekitar 10,45 juta hektar dengan produksi sebesar 54,75 juta ton GKG.,” Badan Pusat Statistik. Accessed: May 30, 2024. [Online]. Available: https://www.bps.go.id/id/pressrelease/2023/03/01/2036/pada-2022--luas-panen-padi-mencapai-sekitar-10-45-juta-hektar-dengan-produksi-sebesar-54-75-juta-ton-gkg-.html

Badan Pusat Statistik, “LUAS PANEN DAN PRODUKSI PADI DI INDONESIA 2023 (ANGKA TETAP) PADDY HARVESTED AREA AND PRODUCTION IN INDONESIA 2023 FINAL FIGURESS R I N G K A S A N,” 2024. Accessed: May 30, 2024. [Online]. Available: https://www.bps.go.id/id/publication/2024/05/06/69834d72f7ef1c32eee5c4b6/ringkasan-eksekutif-luas-panen-dan-produksi-padi-di-indonesia-2023-angka-tetap-.html

S. Savary, L. Willocquet, S. J. Pethybridge, P. Esker, N. McRoberts, and A. Nelson, “The global burden of pathogens and pests on major food crops,” Nat Ecol Evol, vol. 3, no. 3, pp. 430–439, Feb. 2019, doi: 10.1038/s41559-018-0793-y.

C. G. Simhadri, H. K. Kondaveeti, V. K. Vatsavayi, A. Mitra, and P. Ananthachari, “Deep learning for rice leaf disease detection: A systematic literature review on emerging trends, methodologies and techniques,” 2024, China Agricultural University. doi: 10.1016/j.inpa.2024.04.006.

Nurhadiah, S. N. Kartana, and Sanjan, “STUDI JENIS HAMAPENTING TANAMAN PADI LOKAL LAHAN KERINGDESATANJUNG SARI SINTANG ,” vol. 19, Apr. 2023, doi: https://doi.org/10.51826.

Heriandi, E. Syahputra, and F. Rianto, “TINGKAT SERANGAN HAMA PENGGEREK BATANG PADI DI KABUPATEN KAYONG UTARA,” Jurnal Pertanian Agros , vol. 25, 2023, doi: http://dx.doi.org/10.37159/jpa.v25i1.

“Hama Utama Padi,” Dinas Pertanian dan Pangan Kabupaten Kulon Progo. Accessed: Apr. 05, 2024. [Online]. Available: https://pertanian.kulonprogokab.go.id/detil/1206/hama-utama-padi#

A. Ettalibi, A. Elouadi, and A. Mansour, “AI and Computer Vision-based Real-time Quality Control: A Review of Industrial Applications,” in Procedia Computer Science, Elsevier B.V., 2024, pp. 212–220. doi: 10.1016/j.procs.2023.12.195.

G. Habib and S. Qureshi, “Optimization and acceleration of convolutional neural networks: A survey,” Jul. 01, 2022, King Saud bin Abdulaziz University. doi: 10.1016/j.jksuci.2020.10.004.

Y. Lu, X. Wu, P. Liu, H. Li, and W. Liu, “Rice disease identification method based on improved CNN-BiGRU,” Artificial Intelligence in Agriculture, vol. 9, pp. 100–109, Sep. 2023, doi: 10.1016/j.aiia.2023.08.005.

Y. Zhang, D. Xiao, Y. Liu, and H. Wu, “An algorithm for automatic identification of multiple developmental stages of rice spikes based on improved Faster R-CNN,” Crop Journal, vol. 10, no. 5, pp. 1323–1333, Oct. 2022, doi: 10.1016/j.cj.2022.06.004.

P. I. Ritharson, K. Raimond, X. A. Mary, J. E. Robert, and A. J, “DeepRice: A deep learning and deep feature based classification of Rice leaf disease subtypes,” Artificial Intelligence in Agriculture, vol. 11, pp. 34–49, Mar. 2024, doi: 10.1016/j.aiia.2023.11.001.

M. T. Ahad, Y. Li, B. Song, and T. Bhuiyan, “Comparison of CNN-based deep learning architectures for rice diseases classification,” Artificial Intelligence in Agriculture, vol. 9, pp. 22–35, Sep. 2023, doi: 10.1016/j.aiia.2023.07.001.

F. Liao et al., “A hybrid CNN-LSTM model for diagnosing rice nutrient levels at the rice panicle initiation stage,” J Integr Agric, vol. 23, no. 2, pp. 711–723, Feb. 2024, doi: 10.1016/j.jia.2023.05.032.

M. Fauzan Arif, A. Nurkholis, S. Laia, and P. Rosyani, “Deteksi Kendaraan Dengan Metode YOLO,” Jurnal Artificial Inteligent dan Sistem Penunjang Keputusan, vol. 01, no. 01, 2023, [Online]. Available: https://jurnalmahasiswa.com/index.php/aidanspk

P. A. Arjun, S. Suryanarayan, R. S. Viswamanav, S. Abhishek, and T. Anjali, “Unveiling Underwater Structures: MobileNet vs. EfficientNet in Sonar Image Detection,” Procedia Comput Sci, vol. 233, pp. 518–527, 2024, doi: 10.1016/j.procs.2024.03.241.

B. Firmanto, H. Soekotjo, and H. Suyono, “PERBANDINGAN KINERJA ALGORITMA PROMETHEE DAN TOPSIS UNTUK PEMILIHAN GURU TELADAN,” vol. 2, [Online]. Available: http://jurnal.unram.ac.id/index.php/jpp-ipa

Q. Liu et al., “Development of Machine Learning Methods for Accurate Prediction of Plant Disease Resistance,” Engineering, Apr. 2024, doi: 10.1016/j.eng.2024.03.014.

Published
2025-01-19
How to Cite
Tenriola, A., Azis, P. A., Kaswar, A. B., Adiba, F., & Andayani, D. D. (2025). Identifying Rice Plant Damage Due to Pest Attacks Using Convolutional Neural Networks. Jurnal RESTI (Rekayasa Sistem Dan Teknologi Informasi), 9(1), 10 - 19. https://doi.org/10.29207/resti.v9i1.6125
Section
Information Technology Articles