Analysis of Sulawesi Earthquake Data from 2019 to 2023 using DBSCAN Clustering
Abstract
Sulawesi is a region in Indonesia known for its significant seismic activity, and its history of impactful earthquakes makes it an area of crucial importance for in-depth analysis. This study analyses earthquake occurrence data in the Sulawesi region from 2019 to 2023 using clustering methods with the DBSCAN algorithm. The utilization of the DBSCAN algorithm was chosen for its ability to cluster data based on spatial density, well-suited for analyzing the spatial patterns of earthquakes. DBSCAN is known for its effectiveness in identifying spatial clusters, especially in handling data with undefined density patterns. The primary aim of this research is to identify spatial earthquake occurrence patterns, classify regions with similar earthquake occurrence rates, describe the characteristics of the resulting spatial clusters, and identify seismic gap areas. The results of analysis and clustering using the DBSCAN algorithm have identified clusters with earthquake depth characteristics, which are expected to make a significant contribution to mapping and understanding earthquake vulnerability and distribution in this region. These findings can aid in more effective disaster mitigation planning, support sustainable development efforts, and enhance earthquake preparedness and response in Sulawesi. This study contributes to a better understanding of earthquake patterns and potential seismic gaps in Sulawesi, which is crucial for developing improved risk mitigation strategies and supporting sustainable development policies.
Downloads
References
S. J. Hutchings and W. D. Mooney, “The Seismicity of Indonesia and Tectonic Implications,” Geochemistry, Geophysics, Geosystems, vol. 22, no. 9, Sep. 2021, doi: 10.1029/2021GC009812.
A. Bobbette, R. Gamble, C. T. Lee, and C. Wilson, “Decolonizing Geology: A Discussion,” GeoHumanities, vol. 7, no. 2, pp. 647–655, 2021, doi: 10.1080/2373566X.2021.1896373.
Koesnama, “Pensesaran Mendatar Dan Zona Tunjaman Aktif Di Sulawesi: Hubungannya Dengan Kegempaan,” Pensesaran Mendatar Dan Zona Tunjaman Aktif Di Sulawesi: Hubungannya Dengan Kegempaan, vol. 15, 2014.
A. Amalia, U. Harmoko, and G. Yuliyanto, “Clustering of Seismicity in the Indonesian Region for the 2018-2020 Period using the DBSCAN Algorithm,” 2021. [Online]. Available: https://ejournal2.undip.ac.id/index.php/jpa/index
A. Putri, W. Hadi, H. Pratiwi, and I. Slamet, “Pengelompokan Data Gempa Bumi di Indonesia dengan Algoritma K-Means dan DBSCAN,” 2023.
M. Bariklana and A. Fauzan, “Implementation Of The Dbscan Method For Cluster Mapping Of Earthquake Spread Location,” Barekeng: Jurnal Ilmu Matematika dan Terapan, vol. 17, no. 2, pp. 0867–0878, Jun. 2023, doi: 10.30598/barekengvol17iss2pp0867-0878.
B. Maruli Siahaan and A. Roma Rio, “Agglomerative Clustering of 2022 Earthquakes in North Sulawesi, Indonesia,” Buana Information Technology and Computer Sciences (BIT and CS, vol. 4, no. 2, p. 77, 2023, [Online]. Available: https://repogempa.bmkg.go.id/
S. Harini, H. Fahmi, A. D. Mulyanto, and M. Khudzaifah, “The earthquake events and impacts mapping in Bali and Nusa Tenggara using a clustering method,” in IOP Conference Series: Earth and Environmental Science, Institute of Physics Publishing, Apr. 2020. doi: 10.1088/1755-1315/456/1/012087.
P. Bountzis, E. Papadimitriou, and G. Tsaklidis, “Identification and Temporal Characteristics of Earthquake Clusters in Selected Areas in Greece,” Applied Sciences (Switzerland), vol. 12, no. 4, Feb. 2022, doi: 10.3390/app12041908.
Y. Rong, D. D. Jackson, and Y. Y. Kagan, “Seismic gaps and earthquakes,” J Geophys Res Solid Earth, vol. 108, no. B10, Oct. 2003, doi: 10.1029/2002jb002334.
A. Wahyu and Rushendra, “Klasterisasi Dampak Bencana Gempa Bumi Menggunakan Algoritma K-Means di Pulau Jawa,” JEPIN, vol. 8, no. 1, 2022.
S. A. Alasadi and W. S. Bhaya, “Review of data preprocessing techniques in data mining,” Journal of Engineering and Applied Sciences, vol. 12, no. 16, pp. 4102–4107, Sep. 2017, doi: 10.3923/jeasci.2017.4102.4107.
K. M. Arsyad, A. Yunita, H. Mas’uudah Krismartopo, A. Syahputri Dimar, K. Dewi, and I. Madrinovella, “Revealing Insights Through Exploratory Data Analysis on Earthquake Dataset.”
L.-P. Chen, “Practical Statistics for Data Scientists: 50+ Essential Concepts Using R and Python,” Technometrics, vol. 63, no. 2, pp. 272–273, Apr. 2021, doi: 10.1080/00401706.2021.1904738.
H. F. Yang and S. Yao, “Shallow destructive earthquakes,” Earthquake Science, vol. 34, no. 1. Earthquake Science, pp. 15–23, 2021. doi: 10.29382/EQS-2020-0072.
F. Pedregosa FABIANPEDREGOSA et al., “Scikit-learn: Machine Learning in Python Gaël Varoquaux Bertrand Thirion Vincent Dubourg Alexandre Passos PEDREGOSA, VAROQUAUX, GRAMFORT ET AL. Matthieu Perrot,” 2011. [Online]. Available: http://scikit-learn.sourceforge.net.
M. Ester, H.-P. Kriegel, J. Sander, and X. Xu, “A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise,” 1996. [Online]. Available: www.aaai.org
D. Birant and A. Kut, “ST-DBSCAN: An algorithm for clustering spatial-temporal data,” Data Knowl Eng, vol. 60, no. 1, pp. 208–221, Jan. 2007, doi: 10.1016/j.datak.2006.01.013.
E. Schubert, J. Sander, M. Ester, H. P. Kriegel, and X. Xu, “DBSCAN revisited, revisited: Why and how you should (still) use DBSCAN,” ACM Transactions on Database Systems, vol. 42, no. 3, Jul. 2017, doi: 10.1145/3068335.
P. J. Rousseeuw, “Silhouet tes: a graphic al aid to the interpre tation and validati on of cluster analysis,” 1987.
D. L. Davies and D. W. Bouldin, “A Cluster Separation Measure,” IEEE Trans Pattern Anal Mach Intell, vol. PAMI-1, no. 2, pp. 224–227, Apr. 1979.
T. Caliński and J. Harabasz, “A dendrite method for cluster analysis,” Communications in Statistics, vol. 3, no. 1, pp. 1–27, Jan. 1974, doi: 10.1080/03610927408827101.
R. J. G. B. Campello, D. Moulavi, and J. Sander, “Density-Based Clustering Based on Hierarchical Density Estimates.”
A. Kusmiran, Minarti, M. F. I. Massinai, A. Zarkasi, A. A. Maharani, and R. Desiani, “Klasifikasi Kedalaman Kejadian Gempa Menggunakan Algoritma K-Means Clustering: Studi Kasus Kejadian Gempa Di Sulawesi,” JFT: Jurnal Fisika dan Terapannya, vol. 9, no. 2, pp. 79–88, Dec. 2022, doi: 10.24252/jft.v9i2.29198.
Z. Zhan, “Mechanisms and Implications of Deep Earthquakes,” 2019, doi: 10.1146/annurev-earth-053018.
R. Guo, Y. Zheng, and J. Xu, “Stress modulation of the seismic gap between the 2008 Ms 8.0 Wenchuan earthquake and the 2013 Ms 7.0 Lushan earthquake and implications for seismic hazard,” Geophys J Int, vol. 221, no. 3, pp. 2113–2125, 2020, doi: 10.1093/GJI/GGAA143.
W. Thatcher, “Earthquake recurrence and risk assessment in circum-Pacific seismic gaps,” Nature, vol. 341, no. 6241, pp. 432–434, 1989, doi: 10.1038/341432a0.
M. Ibrahim and B. Al-Bander, “An integrated approach for understanding global earthquake patterns and enhancing seismic risk assessment,” International Journal of Information Technology (Singapore), vol. 16, no. 4, pp. 2001–2014, Apr. 2024, doi: 10.1007/s41870-024-01778-1.
T. Zheng, Q. Qiu, J. Lin, and X. Yang, “Raised potential earthquake and tsunami hazards at the North Sulawesi subduction zone after a flurry of major seismicity,” Mar Pet Geol, vol. 148, Feb. 2023, doi: 10.1016/j.marpetgeo.2022.106024.
D. H. Natawidjaja et al., “The 2018 Mw7.5 Palu ‘supershear’ earthquake ruptures geological fault’s multisegment separated by large bends: Results from integrating field measurements, LiDAR, swath bathymetry and seismic-reflection data,” Geophys J Int, vol. 224, no. 2, pp. 985–1002, Feb. 2021, doi: 10.1093/gji/ggaa498.
S. Pasari, A. V. H. Simanjuntak, Neha, and Y. Sharma, “Nowcasting earthquakes in Sulawesi Island, Indonesia,” Geoscience Letters, vol. 8, no. 1. Springer Science and Business Media Deutschland GmbH, Dec. 01, 2021. doi: 10.1186/s40562-021-00197-5.
T. Kiyota, H. Furuichi, R. F. Hidayat, N. Tada, and H. Nawir, “Overview of long-distance flow-slide caused by the 2018 Sulawesi earthquake, Indonesia,” Soils and Foundations, vol. 60, no. 3, pp. 722–735, Jun. 2020, doi: 10.1016/j.sandf.2020.03.015.
M. D. Petersen et al., “Documentation for the 2014 Update of the United States National Seismic Hazard Maps”, [Online]. Available: http://dx.doi.org/10.3
Copyright (c) 2024 Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi)
This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright in each article belongs to the author
- The author acknowledges that the RESTI Journal (System Engineering and Information Technology) is the first publisher to publish with a license Creative Commons Attribution 4.0 International License.
- Authors can enter writing separately, arrange the non-exclusive distribution of manuscripts that have been published in this journal into other versions (eg sent to the author's institutional repository, publication in a book, etc.), by acknowledging that the manuscript has been published for the first time in the RESTI (Rekayasa Sistem dan Teknologi Informasi) journal ;