Making AI Work for Government: Critical Success Factor Analysis Using R-SWARA

  • Bramanti Brillianto Universitas Indonesia
  • Yova Ruldeviyani Universitas Indonesia
  • Darmawan Sidiq Universitas Indonesia
Keywords: Artificial Intelligence, Government, Critical Success Factors

Abstract

This study quantifies what makes Artificial Intelligence (AI) work for government, the critical success factors (CSFs) for successful AI implementation within the Directorate General of Taxes (DGT). Analyzing factors such as technology, organization, process, and environment, the research highlights the importance of organizational readiness, strategic vision, and leadership support to drive successful AI integration within DGT. The dimension of the organization became the most critical factor, followed by technology, process, and environment. The findings offer actionable insights for DGT's decision-making processes, aiding in strategic resource allocation and tailored AI strategy refinement. Furthermore, this research is a valuable reference for other public sector organizations that aim to enhance operational efficiency through the adoption of AI. This study empowers decision makers within the DGT and the wider public sector by providing nuanced information on the critical factors that influence the successful implementation of AI, fostering improved operational efficiency and governance practices.

Downloads

Download data is not yet available.

References

P. Dunleavy and H. Margetts, “Data science, artificial intelligence and the third wave of digital era governance,” Public Policy Adm., p. 09520767231198737, Sep. 2023, doi: 10.1177/09520767231198737.

S. J. Russell, P. Norvig, and E. Davis, Artificial intelligence: a modern approach, 3rd ed. in Prentice Hall series in artificial intelligence. Upper Saddle River: Prentice Hall, 2010.

H. Sheikh, C. Prins, and E. Schrijvers, “Artificial Intelligence: Definition and Background,” in Mission AI, in Research for Policy. , Cham: Springer International Publishing, 2023, pp. 15–41. doi: 10.1007/978-3-031-21448-6_2.

W. G. D. Sousa, E. R. P. D. Melo, P. H. D. S. Bermejo, R. A. S. Farias, and A. O. Gomes, “How and where is artificial intelligence in the public sector going? A literature review and research agenda,” Gov. Inf. Q., vol. 36, no. 4, p. 101392, Oct. 2019, doi: 10.1016/j.giq.2019.07.004.

Venturebeat, “Why do 87% of data science projects never make it into production?,” Jul. 19, 2019. Accessed: Oct. 06, 2023. [Online]. Available: https://venturebeat.com/ai/why-do-87-of-data-science-projects-never-make-it-into-production/

A. Reilly, J. Depa, and G. Douglass, “AI: Built to Scale From Experimental to Exponential,” Accenture. Accessed: Oct. 06, 2023. [Online]. Available: https://www.accenture.com/us-en/insights/artificial-intelligence/ai-investments.html

G. Maragno, L. Tangi, L. Gastaldi, and M. Benedetti, “The spread of Artificial Intelligence in the public sector: a worldwide overview,” in 14th International Conference on Theory and Practice of Electronic Governance, Athens Greece: ACM, Oct. 2021, pp. 1–9. doi: 10.1145/3494193.3494194.

European Commission. Joint Research Centre., AI Watch: European landscape on the use of artificial intelligence by the public sector. LU: Publications Office, 2022. Accessed: Oct. 06, 2023. [Online]. Available: https://data.europa.eu/doi/10.2760/39336

R. Medaglia, J. R. Gil-Garcia, and T. A. Pardo, “Artificial Intelligence in Government: Taking Stock and Moving Forward,” Soc. Sci. Comput. Rev., vol. 41, no. 1, pp. 123–140, Feb. 2023, doi: 10.1177/08944393211034087.

DJP, CRMBI: Langkah Awal Menuju Data Driven Organization. Jakarta: Direktorat Jenderal Pajak, 2022.

M. I. Merhi, “An evaluation of the critical success factors impacting artificial intelligence implementation,” Int. J. Inf. Manag., vol. 69, p. 102545, Apr. 2023, doi: 10.1016/j.ijinfomgt.2022.102545.

M. Dora, A. Kumar, S. K. Mangla, A. Pant, and M. M. Kamal, “Critical success factors influencing artificial intelligence adoption in food supply chains,” Int. J. Prod. Res., vol. 60, no. 14, pp. 4621–4640, Jul. 2022, doi: 10.1080/00207543.2021.1959665.

A. Kumar, V. Mani, V. Jain, H. Gupta, and V. G. Venkatesh, “Managing healthcare supply chain through artificial intelligence (AI): A study of critical success factors,” Comput. Ind. Eng., vol. 175, p. 108815, Jan. 2023, doi: 10.1016/j.cie.2022.108815.

S. Solaimani and L. Swaak, “Critical Success Factors in a multi-stage adoption of Artificial Intelligence: A Necessary Condition Analysis,” J. Eng. Technol. Manag., vol. 69, p. 101760, Jul. 2023, doi: 10.1016/j.jengtecman.2023.101760.

E. K. Zavadskas, Ž. Stević, I. Tanackov, and O. Prentkovskis, “A Novel Multicriteria Approach – Rough Step-Wise Weight Assessment Ratio Analysis Method (R-SWARA) and Its Application in Logistics,” Stud. Inform. Control, vol. 27, no. 1, Mar. 2018, doi: 10.24846/v27i1y201810.

V. Keršulienė, E. K. Zavadskas, and Z. Turskis, “Selection of Rational Dispute Resolution Method by Applying New Step‐Wise Weight Assessment Ratio Analysis (SWARA),” J. Bus. Econ. Manag., vol. 11, no. 2, pp. 243–258, Jun. 2010, doi: 10.3846/jbem.2010.12.

R. A. Williams, N. J. Sheikh, G. M. Duman, and E. Kongar, “Critical Success Factors of Business Intelligence Systems Implementation,” IEEE Eng. Manag. Rev., vol. 50, no. 4, pp. 88–97, Dec. 2022, doi: 10.1109/EMR.2022.3197096.

M. Weber, M. Engert, N. Schaffer, J. Weking, and H. Krcmar, “Organizational Capabilities for AI Implementation—Coping with Inscrutability and Data Dependency in AI,” Inf. Syst. Front., vol. 25, no. 4, pp. 1549–1569, Aug. 2023, doi: 10.1007/s10796-022-10297-y.

S. Barro and T. H. Davenport, “People and Machines: Partners in Innovation,” INNOVATION, 2019.

J. K.-U. Brock and F. Von Wangenheim, “Demystifying AI: What Digital Transformation Leaders Can Teach You about Realistic Artificial Intelligence,” Calif. Manage. Rev., vol. 61, no. 4, pp. 110–134, Aug. 2019, doi: 10.1177/1536504219865226.

O. Neumann, K. Guirguis, and R. Steiner, “Exploring artificial intelligence adoption in public organizations: a comparative case study,” Public Manag. Rev., pp. 1–28, Mar. 2022, doi: 10.1080/14719037.2022.2048685.

J. Kraaijenbrink, J.-C. Spender, and A. J. Groen, “The Resource-Based View: A Review and Assessment of Its Critiques,” J. Manag., vol. 36, no. 1, pp. 349–372, Jan. 2010, doi: 10.1177/0149206309350775.

Y. Roh, G. Heo, and S. E. Whang, “A Survey on Data Collection for Machine Learning: A Big Data - AI Integration Perspective,” IEEE Trans. Knowl. Data Eng., vol. 33, no. 4, pp. 1328–1347, Apr. 2021, doi: 10.1109/TKDE.2019.2946162.

G. Maragno, L. Tangi, L. Gastaldi, and M. Benedetti, “Exploring the factors, affordances and constraints outlining the implementation of Artificial Intelligence in public sector organizations,” Int. J. Inf. Manag., vol. 73, p. 102686, Dec. 2023, doi: 10.1016/j.ijinfomgt.2023.102686.

P. Maroufkhani, M.-L. Tseng, M. Iranmanesh, W. K. W. Ismail, and H. Khalid, “Big data analytics adoption: Determinants and performances among small to medium-sized enterprises,” Int. J. Inf. Manag., vol. 54, p. 102190, Oct. 2020, doi: 10.1016/j.ijinfomgt.2020.102190.

Published
2024-06-28
How to Cite
Brillianto, B., Ruldeviyani, Y., & Sidiq, D. (2024). Making AI Work for Government: Critical Success Factor Analysis Using R-SWARA. Jurnal RESTI (Rekayasa Sistem Dan Teknologi Informasi), 8(3), 438 - 446. https://doi.org/10.29207/resti.v8i3.5813
Section
Information Technology Articles