Improving Performance of KNN and C4.5 using Particle Swarm Optimization in Classification of Heart Diseases

  • Pareza Alam Jusia Universitas Dinamika Bangsa
  • Abdul Rahim Universitas Dinamika Bangsa
  • Herti Yani Universitas Dinamika Bangsa
  • Jasmir Jasmir Universitas Dinamika Bangsa
Keywords: machine learning, classification, improving, performance, heart disease

Abstract

Heart disease is a major problem that must be overcome for human life. In recent years, the volume of medical data related to heart disease has increased rapidly, and various heart disease data has collaborated with information technology such as machine learning to detect, predict, and classify diseases. This research aims to improve the performance of machine learning classification methods, namely K-Nearest Neighbor (KNN) and Decision Tree (C4.5) with particle swarm optimization (PSO) feature in cases of heart disease. In this research, a comparison was made of the performance of the PSO-based K-NN and C4.5 algorithms. Following experiments employing PSO optimization to improve the K-NN and C4.5 algorithms, the findings indicated that the K-NN algorithm performed exceptionally well with PSO, achieving an accuracy of 89.09%, precision of 89.61%, recall of 90.79%, and an AUC value of 0.935.

Downloads

Download data is not yet available.

References

A. Razzaque and D. A. Badholia, “PCA based feature extraction and MPSO based feature selection for gene expression microarray medical data classification,” Meas. Sensors, vol. 31, no. November 2023, p. 100945, 2024, doi: 10.1016/j.measen.2023.100945.

B. Domenech et al., “Valvular Heart Disease Epidemics,” J. Heart Valve Dis., vol. 25, no. 1, pp. 1–7, 2016.

A. Darmawahyuni and S. Nurmaini, “Coronary Heart Disease Interpretation Based on Deep Neural Network,” Comput. Eng. Appl., vol. 8, no. 1, 2019.

K. Vassakis, E. Petrakis, and I. Kopanakis, “Big data analytics: Applications, prospects and challenges,” Lect. Notes Data Eng. Commun. Technol., vol. 10, pp. 3–20, 2018, doi: 10.1007/978-3-319-67925-9_1.

S. Athmaja, M. Hanumanthappa, and V. Kavitha, “A survey of machine learning algorithms for big data analytics,” Proc. 2017 Int. Conf. Innov. Information, Embed. Commun. Syst. ICIIECS 2017, vol. 2018-Janua, no. June, pp. 1–4, 2018, doi: 10.1109/ICIIECS.2017.8276028.

C. W. Tsao et al., Heart Disease and Stroke Statistics-2022 Update: A Report from the American Heart Association, vol. 145, no. 8. 2022. doi: 10.1161/CIR.0000000000001052.

Rusydi Umar, Sunardi, and M. N. A. Nuriyah, “Comparing the Performance of Data Mining Algorithms in Predicting Sentiments on Twitter,” J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 7, no. 4, pp. 817–823, 2023, doi: 10.29207/resti.v7i4.4931.

J. Jasmir, W. Riyadi, S. R. Agustini, Y. Arvita, D. Meisak, and L. Aryani, “Bidirectional Long Short-Term Memory and Word Embedding Feature for,” J. RESTI (Rekayasa Sist. Dan Teknol. Informasi), vol. 6, no. 4, pp. 505–510, 2022, [Online]. Available: https://jurnal.iaii.or.id/index.php/RESTI/article/view/4005/606

T. Sutanto and R. Nayak, “Fine-grained document clustering via ranking and its application to social media analytics,” Soc. Netw. Anal. Min., 2018, doi: 10.1007/s13278-018-0508-z.

J. Chambua and Z. Niu, “Review text based rating prediction approaches: preference knowledge learning, representation and utilization,” Artif. Intell. Rev., vol. 54, no. 2, pp. 1171–1200, 2021, doi: 10.1007/s10462-020-09873-y.

J. Jasmir, D. Z. Abidin, E. Rasywir, and P. A. Jusia, “Prediksi Mahasiswa Drop Out dengan menggunakan Algoritma Klasifikasi Data Mining,” Pros. Annu. Res. Semin. 2018, vol. 4, no. 1, pp. 978–979, 2018.

D. Prihatiningsih and T. Sudyasih, “Perawatan Diri Pada Pasien Gagal Jantung,” J. Pendidik. Keperawatan Indones., vol. 4, no. 2, 2018, doi: 10.17509/jpki.v4i2.13443.

J. Jasmir, W. Riyadi, and P. A. Jusia, “Feature Extraction for Improvement Text Classification of Spam YouTube,” J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 5, no. 158, pp. 1371–1377, 2023.

Y. N. Nanik Rahmawati, Jasmir Jasmir, “Klasifikasi Kondisi Gizi Balita Menggunakan Metode Naive Bayes (Studi Kasus Posyandu Melati IV),” J. Ilm. Mhs. Tek. Inform., vol. 2, no. 3, 2020.

A. Samosir, M. S. Hasibuan, W. E. Justino, and T. Hariyono, “Komparasi Algoritma Random Forest, Naïve Bayes dan K- Nearest Neighbor Dalam klasifikasi Data Penyakit Jantung,” Pros. Semin. Nas. Darmajaya, vol. 1, no. 0, pp. 214–222, 2021, [Online]. Available: https://jurnal.darmajaya.ac.id/index.php/PSND/article/view/2955

S. S. Tabrizi and N. Cavus, “A hybrid KNN-SVM model for Iranian license plate recognition,” Procedia - Procedia Comput. Sci., vol. 102, no. August, pp. 588–594, 2016, doi: 10.1016/j.procs.2016.09.447.

S. R. J. I. Alham, “Sistem Diagnosis Penyakit Jantung Koroner Dengan Menggunakan Algoritma C4.5 Berbasis Website (Studi Kasus: RSUD Dr. Soedarso Pontianak),” Petir, vol. 14, no. 2, pp. 214–222, 2021, doi: 10.33322/petir.v14i2.1338.

A. Sepharni, I. E. Hendrawan, and C. Rozikin, “Klasifikasi Penyakit Jantung dengan Menggunakan Algoritma C4.5,” STRING (Satuan Tulisan Ris. dan Inov. Teknol., vol. 7, no. 2, p. 117, 2022, doi: 10.30998/string.v7i2.12012.

K. Kurniabudi, A. Harris, and A. E. Mintaria, “Komparasi Information Gain, Gain Ratio, CFs-Bestfirst dan CFs-PSO Search Terhadap Performa Deteksi Anomali,” J. Media Inform. Budidarma, vol. 5, no. 1, p. 332, 2021, doi: 10.30865/mib.v5i1.2258.

U. Juhardi, “Optimalisasi Penjualan Motor Menggunakan Algoritma Particle Swarm Optimization ( PSO ),” vol. 15, no. 2, 2019.

G. Kou, P. Yang, Y. Peng, F. Xiao, Y. Chen, and F. E. Alsaadi, “Evaluation of feature selection methods for text classification with small datasets using multiple criteria decision-making methods,” no. xxxx, 2019.

Kurniabudi, D. Stiawan, Darmawijoyo, M. Y. Bin Bin Idris, A. M. Bamhdi, and R. Budiarto, “CICIDS-2017 Dataset Feature Analysis with Information Gain for Anomaly Detection,” IEEE Access, vol. 8, pp. 132911–132921, 2020, doi: 10.1109/ACCESS.2020.3009843.

W. Yunus, “Algoritma K-Nearest Neighbor Berbasis Particle Swarm Optimization Untuk Prediksi Penyakit Ginjal Kronik,” J. Tek. Elektro CosPhi, vol. 2, no. 2, pp. 51–55, 2018, [Online]. Available: https://cosphijournal.unisan.ac.id/index.php/cosphihome/article/view/43%0Ahttps://cosphijournal.unisan.ac.id/index.php/cosphihome/article/download/43/20

U. N. Dulhare, “Prediction system for heart disease using Naive Bayes and particle swarm optimization,” Biomed. Res., vol. 29, no. 12, pp. 2646–2649, 2018, doi: 10.4066/biomedicalresearch.29-18-620.

T. Septiani Nurfauzia Koeswara, M. Sukrisno Mardiyanto, and M. Abdul Ghani, “Penerapan Particle Swarm Optimization (PSO) Dalam Pemilihan Atribut Untuk Meningkatkan Akurasi Prediksi Diagnosispenyakit Hepatitis Dengan Metode Naive Bayes,” J. Speed – Sentra Penelit. Eng. dan Edukasi, vol. 12, no. 1, pp. 1–10, 2020.

L. S. Ramdhani, “Penerapan Particle Swarm Optimization (PSO) untuk Seleksi Atribut dalam Meningkatkan Akurasi Prediksi Diagnosis Penyakit Hepatitis dengan Metode Algoritma C4. 5,” Swabumi, vol. 4, no. 1, pp. 1–15, 2016.

J. Jasmir, S. Nurmaini, and B. Tutuko, “Fine-grained algorithm for improving knn computational performance on clinical trials text classification,” Big Data Cogn. Comput., vol. 5, no. 4, 2021, doi: 10.3390/bdcc5040060.

M. Azam, T. Ahmed, F. Sabah, and M. I. Hussain, “Feature Extraction based Text Classification using K-Nearest Neighbor Algorithm,” IJCSNS Int. J. Comput. Sci. Netw. Secur., vol. 18, no. 12, pp. 95–101, 2018, [Online]. Available: http://paper.ijcsns.org/07_book/201812/20181213.pdf

J. Jasmir, D. Z. Abidin, S. Nurmaini, and R. F. Malik, “Penerapan Metode K-Nearest Neighbor dalam Memprediksi Masa Studi Mahasiswa ( Studi Kasus : Mahasiswa STIKOM Dinamika Bangsa ),” Pros. Annu. Res. Semin. 2017, vol. 3, no. 1, pp. 133–138, 2017.

M. Fayaz, A. Khan, J. U. Rahman, A. Alharbi, M. I. Uddin, and B. Alouffi, “Ensemble machine learning model for classification of spam product reviews,” Complexity, vol. 2020, 2020, doi: 10.1155/2020/8857570.

V. Junita and F. A. Bachtiar, “Klasifikasi Aktivitas Manusia menggunakan Algoritme Decision Tree C4.5 dan Information Gain untuk Seleksi Fitur,” J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 3, no. 10, pp. 9426–9433, 2020, [Online]. Available: http://j-ptiik.ub.ac.id/index.php/j-ptiik/article/view/6446

S. Dwiasnati and Y. Devianto, “Optimasi Prediksi Keputusan Calon Nasabah Potensial Berbasis Particle Swarm Optimization,” vol. 6, no. 2, pp. 286–292, 2019.

D. Wang, D. Tan, and L. Liu, “Particle swarm optimization algorithm: an overview,” Soft Comput., vol. 22, no. 2, pp. 387–408, 2018, doi: 10.1007/s00500-016-2474-6.

J. C. Bansal, Particle Swarm Optimization. Springer International Publishing, 2019. doi: 10.1007/978-3-319-91341-4.

Published
2024-06-01
How to Cite
Jusia, P. A., Rahim, A., Yani, H., & Jasmir, J. (2024). Improving Performance of KNN and C4.5 using Particle Swarm Optimization in Classification of Heart Diseases. Jurnal RESTI (Rekayasa Sistem Dan Teknologi Informasi), 8(3), 333 - 339. https://doi.org/10.29207/resti.v8i3.5710
Section
Information Technology Articles