A Comprehensive Bibliometric Analysis of Deep Learning Techniques for Breast Cancer Segmentation: Trends and Topic Exploration (2019-2023)

  • Agus Perdana Windarto STIKOM Tunas Bangsa, Pematangsiantar, Indonesia
  • Anjar Wanto STIKOM Tunas Bangsa, Pematangsiantar, Indonesia
  • S Solikhun STIKOM Tunas Bangsa, Pematangsiantar, Indonesia
  • Ronal Watrianthos Universitas Al Washliyah, Rantauprapat, Indonesia
Keywords: breast cancer, deep learning, image segmentation, bibliometric, WOS

Abstract

The objective of this study is to perform a comprehensive bibliometric analysis of the existing literature on breast cancer segmentation using deep learning techniques. Data for this analysis were obtained from the Web of Science Core Collection (WOS-CC) that spans from 2019 to 2023. The study is based on a comprehensive collection of 985 documents that cover a substantial body of research findings related to the application of deep learning techniques in segmenting breast cancer images. The analysis reveals an annual increase in the number of published works at a rate of 16.69%, indicating a consistent and robust increase in research efforts during the specified time frame. Examining the occurrence of keywords from 2019 to 2023, it is evident that the term "convolutional neural network" exhibited a notable frequency, reaching its peak in 2021. However, the term "machine learning" demonstrated the highest overall frequency, peaking around 2021 as well. This emphasizes the importance of machine learning in the advancement of image segmentation algorithms and convolutional neural networks, which have shown exceptional effectiveness in image analysis tasks. Furthermore, the utilization of latent Dirichlet Allocation (LDA) to identify topics resulted in a relatively uniform distribution, with each topic having an equivalent number of abstracts. This indicates that the data set encompasses a diverse range of topics within the field of deep learning as it relates to breast cancer image segmentation. However, it should be noted that topic 4 has the highest level of significance, suggesting that the application of deep learning for diagnosis was extensively explored in this study.

Downloads

Download data is not yet available.

References

N. Harbeck et al., Breast cancer, vol. 5, no. 1. 2019. doi: 10.1038/s41572-019-0111-2.

L. Ellis, L. M. Woods, J. Estève, S. Eloranta, M. P. Coleman, and B. Rachet, “Cancer incidence, survival and mortality: Explaining the concepts,” Int J Cancer, vol. 135, no. 8, pp. 1774–1782, 2014, doi: 10.1002/ijc.28990.

R. M. Reilly, “Ultrasound imaging technology,” Medical Imaging for Health Professionals: Technologies and Clinical Applications, vol. 44, no. 1, pp. 107–113, 2019, doi: 10.1002/9781119537397.ch6.

A. A. Ardakani, A. Mohammadi, M. Mirza-Aghazadeh-Attari, and U. R. Acharya, “An open-access breast lesion ultrasound image database: Applicable in artificial intelligence studies,” Comput Biol Med, vol. 152, 2023, doi: 10.1016/j.compbiomed.2022.106438.

Q. Q. He, Q. J. Yang, and M. H. Xie, “HCTNet: A hybrid CNN-transformer network for breast ultrasound image segmentation,” Comput Biol Med, vol. 155, 2023, doi: 10.1016/j.compbiomed.2023.106629.

H. Meng et al., “DGANET: A Dual Global Attention Neural Network For Breast Lesion Detection In Ultrasound Images,” Ultrasound Med Biol, vol. 49, no. 1, pp. 31–44, 2023, doi: 10.1016/j.ultrasmedbio.2022.07.006 WE - Science Citation Index Expanded (SCI-EXPANDED).

S. Y. Lu, S. H. Wang, and Y. D. Zhang, “BCDNet: An Optimized Deep Network for Ultrasound Breast Cancer Detection,” IRBM, vol. 44, no. 4, 2023, doi: 10.1016/j.irbm.2023.100774.

Y. Alzahrani and B. Boufama, “Medical-Network (Med-Net): A Neural Network for Breast Cancer Segmentation in Ultrasound Image,” Advanced Intelligent Virtual Reality Technologies, AIVR 2022, vol. 330, no. 6th International Conference on Artificial Intelligence and Virtual Reality (AIVR). Univ Windsor, 401 Sunset Ave, Windsor N9B 3P4, ON, Canada, pp. 145–159, 2023. doi: 10.1007/978-981-19-7742-8_12 WE - Conference Proceedings Citation Index - Science (CPCI-S).

M. A. Hassanien, V. K. Singh, D. Puig, and M. Abdel-Nasser, “Predicting Breast Tumor Malignancy Using Deep ConvNeXt Radiomics and Quality-Based Score Pooling in Ultrasound Sequences,” DIAGNOSTICS, vol. 12, no. 5, 2022, doi: 10.3390/diagnostics12051053 WE - Science Citation Index Expanded (SCI-EXPANDED).

H. M. Balaha, M. Saif, A. Tamer, and E. H. Abdelhay, “Hybrid deep learning and genetic algorithms approach (HMB-DLGAHA) for the early ultrasound diagnoses of breast cancer,” Neural Comput Appl, vol. 34, no. 11, pp. 8671–8695, 2022, doi: 10.1007/s00521-021-06851-5.

W. Q. Shen et al., “Using an Improved Residual Network to Identify PIK3CA Mutation Status in Breast Cancer on Ultrasound Image,” Front Oncol, vol. 12, 2022, doi: 10.3389/fonc.2022.850515 WE - Science Citation Index Expanded (SCI-EXPANDED).

X. L. Qu et al., “A VGG attention vision transformer network for benign and malignant classification of breast ultrasound images,” Med Phys, vol. 49, no. 9, pp. 5787–5798, 2022, doi: 10.1002/mp.15852.

L. Shen, L. R. Margolies, J. H. Rothstein, E. Fluder, R. McBride, and W. Sieh, “Deep Learning to Improve Breast Cancer Detection on Screening Mammography,” Sci Rep, vol. 9, no. 1, pp. 1–12, 2019, doi: 10.1038/s41598-019-48995-4.

A. Yala, C. Lehman, T. Schuster, T. Portnoi, and R. Barzilay, “A deep learning mammography-based model for improved breast cancer risk prediction,” Radiology, vol. 292, no. 1, pp. 60–66, 2019, doi: 10.1148/radiol.2019182716.

M. Siddique, M. Liu, P. Duong, and S. Jambawalikar, “Deep Learning Approaches with Digital Mammography for Evaluating Breast Cancer Risk , a Narrative Review,” pp. 1110–1119, 2023.

M. Prodan, E. Paraschiv, and A. Stanciu, “Applying Deep Learning Methods for Mammography Analysis and Breast Cancer Detection,” Applied Sciences (Switzerland), vol. 13, no. 7, 2023, doi: 10.3390/app13074272.

M. A. P. Wibowo, M. B. Al Fayyadl, Y. Azhar, and Z. Sari, “Classification of Brain Tumors on MRI Images Using Convolutional Neural Network Model EfficientNet,” Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), vol. 6, no. 4, pp. 538–547, 2022, doi: 10.29207/resti.v6i4.4119.

Y. Wang, Z. Jin, Y. Tokuda, Y. Naoi, N. Tomiyama, and K. Suzuki, “Development of Deep-learning Segmentation for Breast Cancer in MR Images based on Neural Network Convolution,” in Proceedings of the 2019 8th International Conference on Computing and Pattern Recognition, New York, NY, USA: ACM, Oct. 2019, pp. 187–191. doi: 10.1145/3373509.3373566.

K. Jermsittiparsert, A. Abdurrahman, P. Siriattakul, and ..., “Pattern recognition and features selection for speech emotion recognition model using deep learning,” International Journal of …, 2020, doi: 10.1007/s10772-020-09690-2.

X. Liu, L. Song, S. Liu, and Y. Zhang, “A review of deep-learning-based medical image segmentation methods,” Sustainability (Switzerland), vol. 13, no. 3, 2021, doi: 10.3390/su13031224.

Z. Guo, X. Li, H. Huang, N. Guo, and Q. Li, “Deep Learning-Based Image Segmentation on Multimodal Medical Imaging,” IEEE Trans Radiat Plasma Med Sci, vol. 3, no. 2, pp. 162–169, Mar. 2019, doi: 10.1109/TRPMS.2018.2890359.

J. Bar-Ilan, “Which h-index? - A comparison of WoS, Scopus and Google Scholar,” Scientometrics, vol. 74, no. 2, 2008, doi: 10.1007/s11192-008-0216-y.

J. Zhang, Q. Yu, F. Zheng, C. Long, Z. Lu, and Z. Duan, “Comparing keywords plus of WOS and author keywords: A case study of patient adherence research,” J Assoc Inf Sci Technol, vol. 67, no. 4, pp. 967–972, Apr. 2016, doi: 10.1002/asi.23437.

A. Ninkov, J. R. Frank, and L. A. Maggio, “Bibliometrics: Methods for studying academic publishing,” Perspect Med Educ, vol. 11, no. 3, 2022, doi: 10.1007/s40037-021-00695-4.

J. I. Gorraiz, “Editorial: Best Practices in Bibliometrics & Bibliometric Services,” Front Res Metr Anal, vol. 6, Nov. 2021, doi: 10.3389/frma.2021.771999.

Ronal Watrianthos, Ambiyar Ambiyar, Fahmi Rizal, Nizwardi Jalinus, and Waskito Waskito, “Research on Vocational Education in Indonesia: A Bibliometric Analysis,” JTEV (Jurnal Teknik Elektro dan Vokasional), vol. 8, no. 2, 2022.

Yose Indarta, R. Watrianthos, and Agariadne Dwinggo Samala, “Research Growth of Engineering Faculty Universitas Negeri Padang: A Bibliometric Study of Journal,” Journal of Systems Engineering and Information Technology (JOSEIT), vol. 2, no. 1, pp. 16–24, Mar. 2023, doi: 10.29207/joseit.v2i1.5017.

C. Birkle, D. A. Pendlebury, J. Schnell, and J. Adams, “Web of science as a data source for research on scientific and scholarly activity,” Quantitative Science Studies, vol. 1, no. 1, 2020, doi: 10.1162/qss_a_00018.

J. Zhu and W. Liu, “A tale of two databases: the use of Web of Science and Scopus in academic papers,” Scientometrics, vol. 123, no. 1, 2020, doi: 10.1007/s11192-020-03387-8.

M. Aria and C. Cuccurullo, “bibliometrix : An R-tool for comprehensive science mapping analysis,” J Informetr, vol. 11, no. 4, pp. 959–975, Nov. 2017, doi: 10.1016/j.joi.2017.08.007.

M. Nagaiah, S. Thanuskodi, and A. Alagu, “Application of Lotka’s Law to the Research Productivity in the field of Open Educational Resources during 2011-2020,” Library Philosophy and Practice, vol. 2021, 2021.

L. Shen, L. R. Margolies, J. H. Rothstein, E. Fluder, R. McBride, and W. Sieh, “Deep Learning to Improve Breast Cancer Detection on Screening Mammography,” Sci Rep, vol. 9, no. 1, p. 12495, Aug. 2019, doi: 10.1038/s41598-019-48995-4.

T. G. Debelee, S. R. Kebede, F. Schwenker, and Z. M. Shewarega, “Deep Learning in Selected Cancers’ Image Analysis—A Survey,” J Imaging, vol. 6, no. 11, p. 121, Nov. 2020, doi: 10.3390/jimaging6110121.

L. Guo et al., “Divide and Conquer: A Flexible Deep Learning Strategy for Exploring Metabolic Heterogeneity from Mass Spectrometry Imaging Data,” Anal Chem, vol. 95, no. 3, pp. 1924–1932, Jan. 2023, doi: 10.1021/acs.analchem.2c04045.

Z. Sha, L. Hu, and B. D. Rouyendegh, “Deep learning and optimization algorithms for automatic breast cancer detection,” Int J Imaging Syst Technol, vol. 30, no. 2, pp. 495–506, Jun. 2020, doi: 10.1002/ima.22400.

Y. Zhao, J. Zhang, D. Hu, H. Qu, Y. Tian, and X. Cui, “Application of Deep Learning in Histopathology Images of Breast Cancer: A Review,” Micromachines (Basel), vol. 13, no. 12, p. 2197, Dec. 2022, doi: 10.3390/mi13122197.

Q. Sun et al., “Deep Learning vs. Radiomics for Predicting Axillary Lymph Node Metastasis of Breast Cancer Using Ultrasound Images: Don’t Forget the Peritumoral Region,” Front Oncol, vol. 10, Jan. 2020, doi: 10.3389/fonc.2020.00053.

L. Shen, L. R. Margolies, J. H. Rothstein, E. Fluder, R. McBride, and W. Sieh, “Deep Learning to Improve Breast Cancer Detection on Screening Mammography,” Sci Rep, vol. 9, no. 1, p. 12495, Aug. 2019, doi: 10.1038/s41598-019-48995-4.

F. Jia, X.-C. Tai, and J. Liu, “Nonlocal regularized CNN for image segmentation,” Inverse Problems & Imaging, vol. 14, no. 5, pp. 891–911, 2020, doi: 10.3934/ipi.2020041.

N. A. Farrag, A. Lochbihler, J. A. White, and E. Ukwatta, “Evaluation of fully automated myocardial segmentation techniques in native and contrast‐enhanced T1‐mapping cardiovascular magnetic resonance images using fully convolutional neural networks,” Med Phys, vol. 48, no. 1, pp. 215–226, Jan. 2021, doi: 10.1002/mp.14574.

L. Zhou, Q. Li, G. Huo, and Y. Zhou, “Image Classification Using Biomimetic Pattern Recognition with Convolutional Neural Networks Features,” Comput Intell Neurosci, vol. 2017, pp. 1–12, 2017, doi: 10.1155/2017/3792805.

J. Alzubi, A. Nayyar, and A. Kumar, “Machine Learning from Theory to Algorithms: An Overview,” J Phys Conf Ser, vol. 1142, p. 012012, Nov. 2018, doi: 10.1088/1742-6596/1142/1/012012.

D. Faroek, R. Umar, and Riadi, “Classification Based on Machine Learning Methods for Identification of Image Matching Achievements,” Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), vol. 6, no. 2, pp. 198–206, 2022, doi: 10.29207/resti.v6i2.3826.

L. Sun, S. Zhang, H. Chen, and L. Luo, “Brain Tumor Segmentation and Survival Prediction Using Multimodal MRI Scans With Deep Learning,” Front Neurosci, vol. 13, Aug. 2019, doi: 10.3389/fnins.2019.00810.

H. Seo, L. Brand, L. S. Barco, and H. Wang, “Scaling multi-instance support vector machine to breast cancer detection on the BreaKHis dataset,” Bioinformatics, vol. 38, 2022, doi: 10.1093/bioinformatics/btac267.

E. M. Senan, F. W. Alsaade, M. I. A. Al-Mashhadani, T. H. H. Aldhyani, and M. H. Al-Adhaileh, “Classification of histopathological images for early detection of breast cancer using deep learning,” Journal of Applied Science and Engineering (Taiwan), vol. 24, no. 3, 2021, doi: 10.6180/jase.202106_24(3).0007.

W. Wiranto and M. R. Uswatunnisa, “Topic Modeling for Support Ticket using Latent Dirichlet Allocation,” Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), vol. 6, no. 6, pp. 998–1005, 2022, doi: 10.29207/resti.v6i6.4542.

D. Adimanggala, F. A. Bachtiar, and E. Setiawan, “Evaluasi Topik Tersembunyi Berdasarkan Aspect Extraction menggunakan Pengembangan Latent Dirichlet Allocation,” Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), vol. 5, no. 3, pp. 511–519, 2021, doi: 10.29207/resti.v5i3.3075.

Published
2023-10-05
How to Cite
Agus Perdana Windarto, Anjar Wanto, S Solikhun, & Ronal Watrianthos. (2023). A Comprehensive Bibliometric Analysis of Deep Learning Techniques for Breast Cancer Segmentation: Trends and Topic Exploration (2019-2023). Jurnal RESTI (Rekayasa Sistem Dan Teknologi Informasi), 7(5), 1155 - 1164. https://doi.org/10.29207/resti.v7i5.5274
Section
Information Technology Articles