Klasifikasi Citra X-Ray Diagnosis Tuberkulosis Berbasis Fitur Statistis

  • Yudhi Agussationo Politeknik Jambi
  • Indah Soesanti Universitas Gadjah Mada
  • Warsun Najib Universitas Gadjah Mada
Keywords: Feature Extraction, X-Ray Image, Tuberculosis, Statistic, Histogram GLCM, PCA

Abstract

Tuberculosis is one of the causes of human death. The results of the x-ray examination of tuberculosis diagnosis can be used as an object in the feature extraction process which is a stage in extracting the characteristics of the object contained in an image of a diagnosis of tuberculosis. In this study used first-order statistic (histogram), first-order Gray-Level Co-occurrence Matrix (GLCM) feature extraction methods, as well as the Principle Component Analysis (PCA). Data research digital x-ray tuberculosis patients from Dr. Sardjito Yogyakarta as 33 patients in 2012. Each 6 normal PA (Postero-anterior), 19 abnormal PA, 4 normal AP (Antero-Posterior), and 4 abnormal AP. This study aims to find the best characteristics contained in the x-ray image of tuberculosis diagnosis using statistical texture analysis obtained from features found in feature extraction methods. Identified features: variance, standard deviation, skewness, kurtosis, contrast and energy. Classification uses 33 test data are built using the Multi Layer Perceptron (MLP) method, while the output is a normal and abnormal image. The results showed that the accuracy classification used Histogram (81,81%), GLCM (96,96%), PCA (81,82%), and combination GLCM Histogram (100%).

References

[1] Departemen Kesehatan Republik Indonesia., 2006. Pedoman Nasional Penanggulangan Tuberkulosis. Edisi 2 Cetakan Pertama. Jakarta.
[2] Perhimpunan Dokter Paru Indonesia., 2002. Tuberkulosis: Pedoman Diagnosis & Penatalaksanaan di Indonesia. Jakarta.
[3] Sumartono, I., 2009. Implementasi Metode Kohonen SOM (Self Organizing Maps) untuk Identifikasi Penyakit Paru-Paru Terhadap Penyakit Tuberkulosis. Surabaya : STIKOM Surabaya.
[4] Setia, I., 2009. Studi Identifikasi Penyakit Tuberkulosis Pada Paru-Paru Dengan Metode Jaringan Syaraf Tiruan. Surabaya : ITS Surabaya.
[5] Zain, Y., 2010. Identifikasi Bakteri Tuberkulosis Berdasarkan Ciri morfologi dan Warna. Surabaya : ITS Surabaya.
[6] Supatman., 2009. Deteksi Pembesaran Kelenjar Getah Bening Pada Paru Dengan Pengolahan Citra Digital Untuk Mendiagnosa Penyakit Primer Kompleks Tuberkulosis (PKTB). In: SNATI Jurusan Teknik Informatika, Fakultas Teknologi Industri, Universitas Islam Indonesia, ISSN: 1907-5022. Yogyakarta.
[7] Nur Rohmah, R., 2013. Lung Tuberculosis Identification Based on Statistical Feature of Thoracic X-ray. Quality in research 2013, 978-1-4673-5785-2/13/$31.00 ©2013 IEEE.
[8] Tansa, S., 2010. Deteksi Tumor Otak dan Stroke Hemoragik Pada Citra CT Scan dengan Analisis Tekstur Gray Level Co-occurence Matriks (GLCM). Tesis. M.Eng. Fakultas Teknik. Universitas Gadjah Mada. Yogyakarta.
[9] Arif A., Pengenalan Wajah Menggunakan PCA dan Jaringan Syaraf Tiruan. Universitas Airlangga. Surabaya.
[10] Marques O, Furht B., 2002. Content Based Image and Video Retrieval. Florida Atlantic University Baca Raton, FL, USA: Kluwer Academic Publisher.
[11] Osadebey ME., 2006. Integrated Content-BasedImage Retrieval using Texture, Shape, andSpatial Information. Master Thesis: UmeaUniversity.
Published
2018-11-06
Section
Technology Information Article