Real-Time Detection of Face Mask Using Convolutional Neural Network

  • Imam Husni Al Amin Universitas Stikubank
  • Deva Ega Marinda Universitas Stikubank
  • Edy Winarno Universitas Stikubank
  • Dewi Handayani U.N Universitas Stikubank
  • Veronica Lusiana Universitas Stikubank
Keywords: Mask detection; CNN; face detection; face recognition; pollution

Abstract

Masks are a simple barrier that can help us prevent transmission and spread of disease from other people who enter the body, avoid exposure to air pollution, and protect the face from the adverse effects of sunlight. However, many people are still ignorant about the importance of wearing masks for health. This study aims to detect whether or not to use masks in real-time by proposing a deep learning model to reduce illness and death caused by air pollution. The convolutional Neural Network (CNN) method was used in this research to detect facial recognition using a mask and not using a mask. The public dataset used in this research consists of 1300 images with 650 data using masks and 650 data without masks. The results of this study show that the proposed CNN method works well in detecting masked and non-masked faces in real time. The proposed method obtains an accuracy value of 97.5% at epoch 50. Previous research on mask detection using the Eigenface method yielded an accuracy of 88.89%, and another study using the Viola-Jones method yielded an accuracy of 95.5%. It can be concluded that this research can increase the accuracy value of previous studies. So, this research is feasible to be applied to the detection of mask use in real time.

 

Downloads

Download data is not yet available.

References

S. S. Farfade, M. J. Saberian, and L.-J. Li, “Multi-view Face Detection Using Deep Convolutional Neural Networks,” in Proceedings of the 5th ACM on International Conference on Multimedia Retrieval, New York, NY, USA: ACM, Jun. 2015. doi: 10.1145/2671188.2749408.

E. Winarno, I. Husni Al Amin, H. Februariyanti, P. W. Adi, W. Hadikurniawati, and M. T. Anwar, “Attendance System Based on Face Recognition System Using CNN-PCA Method and Real-time Camera,” in 2019 International Seminar on Research of Information Technology and Intelligent Systems (ISRITI), IEEE, Dec. 2019. doi: 10.1109/ISRITI48646.2019.9034596.

P. Wang, P. Wang, and E. Fan, “Violence detection and face recognition based on deep learning,” Pattern Recognit Lett, vol. 142, Feb. 2021, doi: 10.1016/j.patrec.2020.11.018.

N. N. A. Mangshor, I. A. A. Majid, S. Ibrahim, and N. Sabri, “A real-time drowsiness and fatigue recognition using support vector machine,” IAES International Journal of Artificial Intelligence (IJ-AI), vol. 9, no. 4, Dec. 2020, doi: 10.11591/ijai.v9.i4.pp584-590.

K. K. Kumar, Y. Kasiviswanadham, D. V. S. N. V. Indira, P. Priyanka palesetti, and Ch. V. Bhargavi, “Criminal face identification system using deep learning algorithm multi-task cascade neural network (MTCNN),” Mater Today Proc, Jul. 2021, doi: 10.1016/j.matpr.2021.06.373.

E. Yaghoubi, D. Borza, J. Neves, A. Kumar, and H. Proença, “An attention-based deep learning model for multiple pedestrian attributes recognition,” Image Vis Comput, vol. 102, Oct. 2020, doi: 10.1016/j.imavis.2020.103981.

E. Maiorana, “Deep learning for EEG-based biometric recognition,” Neurocomputing, vol. 410, Oct. 2020, doi: 10.1016/j.neucom.2020.06.009.

N. K. C. Pratiwi, Y. N. Fu’adah, and E. Edwar, “Early Detection of Deforestation through Satellite Land Geospatial Images based on CNN Architecture,” JURNAL INFOTEL, vol. 13, no. 2, May 2021, doi: 10.20895/infotel.v13i2.642.

M. Harahap, M. Damanik, L. Wati, W. V. Simamora, I. K. Sipahutar, and A. M. Husein, “Automatic detection of covid-19 based on CT Scan images using the convolution neural network,” JURNAL INFOTEL, vol. 13, no. 4, Dec. 2021, doi: 10.20895/infotel.v13i4.689.

K. L. Kohsasih and B. H. Hayadi, “Classification SARS-CoV-2 Disease based on CT-Scan Image Using Convolutional Neural Network,” Scientific Journal of Informatics, vol. 9, no. 2, Nov. 2022, doi: 10.15294/sji.v9i2.36583.

S. G. Al-Kindi, R. D. Brook, S. Biswal, and S. Rajagopalan, “Environmental determinants of cardiovascular disease: lessons learned from air pollution,” Nat Rev Cardiol, vol. 17, no. 10, pp. 656–672, 2020.

S. Rajagopalan and P. J. Landrigan, “Pollution and the Heart,” New England Journal of Medicine, vol. 385, no. 20, Nov. 2021, doi: 10.1056/NEJMra2030281.

R. Burnett et al., “Global estimates of mortality associated with long-term exposure to outdoor fine particulate matter,” Proceedings of the National Academy of Sciences, vol. 115, no. 38, pp. 9592–9597, 2018.

J. Lelieveld et al., “Cardiovascular disease burden from ambient air pollution in Europe reassessed using novel hazard ratio functions,” Eur Heart J, vol. 40, no. 20, pp. 1590–1596, 2019.

K. Vohra, A. Vodonos, J. Schwartz, E. A. Marais, M. P. Sulprizio, and L. J. Mickley, “Global mortality from outdoor fine particle pollution generated by fossil fuel combustion: Results from GEOS-Chem,” Environ Res, vol. 195, p. 110754, 2021.

H. Hendriyana and Yazid Hilman Maulana, “Identification of Types of Wood using Convolutional Neural Network with Mobilenet Architecture,” Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), vol. 4, no. 1, Feb. 2020, doi: 10.29207/resti.v4i1.1445.

A. M. Atha and E. Zuliarso, “Deteksi Tanaman Herbal Khusus Untuk Penyakit Kulit Dan Penyakit Rambut Menggunakan Convolutional Neural Network (CNN) Dan Tensorflow,” JUPITER (Jurnal Penelitian Ilmu dan Teknik Komputer), vol. 14, no. 2-a, pp. 1–10, 2022.

I. Weni, P. E. P. Utomo, B. F. Hutabarat, and M. Alfalah, “Detection of Cataract Based on Image Features Using Convolutional Neural Networks,” IJCCS (Indonesian Journal of Computing and Cybernetics Systems), vol. 15, no. 1, Jan. 2021, doi: 10.22146/ijccs.61882.

C. Lee and J. An, “LSTM-CNN model of drowsiness detection from multiple consciousness states acquired by EEG,” Expert Syst Appl, vol. 213, Mar. 2023, doi: 10.1016/j.eswa.2022.119032.

M. Lestandy, “Deteksi Dini Kanker Payudara Menggunakan Metode Convolution Neural Network (CNN),” Inspiration: Jurnal Teknologi Informasi dan Komunikasi, vol. 12, no. 1, pp. 65–72, 2022.

S. Samuel, K. R. Prilianti, H. Setiawan, and P. Mimboro, “Metode Deteksi Pokok Pohon Secara Automatis pada Citra Perkebunan Sawit Menggunakan Model Convolutional Neural Network (CNN) pada Perangkat Lunak Sistem Informasi Geografis,” Jurnal Teknologi Informasi dan Ilmu Komputer, vol. 9, no. 7, pp. 1689–1698, 2022.

A. Saxena and S. P. Singh, “A Deep Learning Approach for the Detection of COVID-19 from Chest X-Ray Images using Convolutional Neural Networks,” arXiv preprint arXiv:2201.09952, 2022.

H. S. Ibrahim, J. Jondri, and U. N. Wisesty, “Analisis Deep Learning Untuk Mengenali Qrs Kompleks Pada Sinyal Ecg Dengan Metode Cnn,” eProceedings of Engineering, vol. 5, no. 2, 2018.

N. Saffari et al., “Fully automated breast density segmentation and classification using deep learning,” Diagnostics, vol. 10, no. 11, p. 988, 2020.

J. D. Dormer, M. Halicek, L. Ma, C. M. Reilly, E. Schreibmann, and B. Fei, “Convolutional neural networks for the detection of diseased hearts using CT images and left atrium patches,” in Medical Imaging 2018: Computer-Aided Diagnosis, SPIE, 2018, pp. 671–677.

A. Chattopadhyay and M. Maitra, “MRI-based brain tumor image detection using CNN based deep learning method,” Neuroscience Informatics, p. 100060, 2022.

Y. N. Fu’adah, N. K. C. Pratiwi, M. A. Pramudito, and N. Ibrahim, “Convolutional neural network (cnn) for automatic skin cancer classification system,” in IOP conference series: materials science and engineering, IOP Publishing, 2020, p. 012005.

Jalu Nusantoro, Faldo Fajri Afrinanto, Wana Salam Labibah, Zamah Sari, and Yufis Azhar, “Detection of Covid-19 on X-Ray Image of Human Chest Using CNN and Transfer Learning,” Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), vol. 6, no. 3, Jun. 2022, doi: 10.29207/resti.v6i3.4118.

Rima Dias Ramadhani, A. Nur Aziz Thohari, C. Kartiko, A. Junaidi, T. Ginanjar Laksana, and N. Alim Setya Nugraha, “Optimasi Akurasi Metode Convolutional Neural Network untuk Identifikasi Jenis Sampah,” Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), vol. 5, no. 2, Apr. 2021, doi: 10.29207/resti.v5i2.2754.

P. Ma, “Recognition of handwritten digit using convolutional neural network,” in 2020 International Conference on Computing and Data Science (CDS), IEEE, 2020, pp. 183–190.

N. Nur, I. Indra, F. Wajidi, and I. A. Khofifah, “Sistem Deteksi Penggunaan Masker secara Real Time menggunakan Metode Eigenface dan Support Vector Machine,” Jurnal Komputer Terapan, vol. 8, no. 2, pp. 225–235, 2022.

T. Arifianto, “Penerapan Algoritma Viola-Jones Untuk Deteksi Masker Covid-19 Di Politeknik Perkeretaapian Indonesia Madiun,” JATISI (Jurnal Teknik Informatika dan Sistem Informasi), vol. 8, no. 4, Dec. 2021, doi: 10.35957/jatisi.v8i4.1106.

Published
2023-06-03
How to Cite
Imam Husni Al Amin, Deva Ega Marinda, Edy Winarno, Dewi Handayani U.N, & Veronica Lusiana. (2023). Real-Time Detection of Face Mask Using Convolutional Neural Network. Jurnal RESTI (Rekayasa Sistem Dan Teknologi Informasi), 7(3), 697 - 704. https://doi.org/10.29207/resti.v7i3.5036
Section
Information Technology Articles