Clustering Analysis and Mapping of ISPA Disease Spread Patterns in Bireuen District
Abstract
ISPA disease can be detected by analyzing the regional distribution map of the disease. Early detection of ARI is very important for effective prevention. The study conducted in Bireuen Regency used data from 2019 to 2021, sourced from dr. Fauziah Bireuen Hospital, revealed that there was an increase in ARI cases from an average of 13.18 to 59.24 per year. The aims of the study were to identify ARI clusters, analyze disease patterns using Spatial Pattern Analysis and Flexible Shaped Spatial Scanning Statistics. The methodology involves collecting patient data for each ARI case and processing it using DBSCAN to obtain cluster points on the map. Spatial Pattern Analysis is used to analyze these clusters and identify hotspot points on the map. The analysis resulted in four clusters: Cluster 1 (6 subdistrict), Cluster 2 (4 subdistrict), Cluster 3 (1 subdistrict), and Cluster 4 (6 subdistrict). The study identified 6 hotspots in 2019, 5 hotspots in 2020, and 6 hotspots in 2021. Each ARI disease clustering map shows the distribution of ARI cases and identifies areas prone to the disease. These findings provide valuable insights for targeted interventions and preventive actions in identified high-risk areas of ISPA.
Downloads
References
Ririnisahawaitun and D. A. Ikhwani, “Artikel Penelitian Pengaruh Pendidikan Kesehatan Terhadap Pengetahuan Pencegahan Penyakit Menular Ispa Pada Balita Di Desa Kalibambang Wilayah Kerja Puskesmas Lenek,” vol. 7, no. 2, 2020.
N. Qona’ah, D. Sutikno, and J. Statistika, “Analisis Pola Persebaran ISPA (Infeksi Saluran Pernafasan Akut) Sebagai Dampak Industri Migas di Kabupaten Bojonegoro Menggunakan Spatial Pattern Analysis dan Flexibly Shaped Spatial Scan Statistic,” 2016.
Ernyasih, F. Fajrini, and N. Latifah, “Analisis Hubungan Iklim (CurahHujan, Kelembaban, Suhu Udara dan Kecepatan Angin) dengan Kasus ISPA di DKI Jakarta Tahun 2011 –2015,” 2018.
C. Herawati and H. Sriwaty, “Analisis Perilaku Merokok, Penggunaan Anti Nyamuk Bakar Dan Penggunaan Bahan Bakar Memasak Dengan Kejadian Ispa Pada Balita,” Jurnal Kesehatan, vol. Vol. 9 No.1, 2018.
M. Jupri and R. Sarno, “Data mining, fuzzy AHP and TOPSIS for optimizing taxpayer supervision,” Indonesian Journal of Electrical Engineering and Computer Science, vol. 18, no. 1, pp. 75–87, 2019.
https:// doi: 10.11591/ijeecs.v18.i1.pp75-87.
I. W. Gamadarenda and I. Waspada, “Implementasi Data Mining Untuk Deteksi Penyakit Ginjal Kronis (Pgk) Menggunakan K-Nearest Neighbor (Knn) Dengan Backward Elimination,” vol. 7, no. 2, pp. 417–426, 2020, doi: 10.25126/jtiik.202071896.
S. Ucha Putri, E. Irawan, F. Rizky, S. Tunas Bangsa, P. A. -Indonesia Jln Sudirman Blok No, and S. Utara, “Implementasi Data Mining Untuk Prediksi Penyakit Diabetes Dengan Algoritma C4.5,” 2021.
B. Tri, R. Doni, S. Susanti, and A. Mubarok, “Penerapan Data Mininguntuk Klasifikasi Penyakit Hepatocellular Carcinomamenggunakan Algoritma Naïve Bayes,” JURNAL RESPONSIF, vol. 3, no. 1, pp. 12–19, 2021, [Online]. Available: http://ejurnal.ars.ac.id/index.php/jti
K. Mumtaz and K. Duraiswamy, “An Analysis on Density Based Clustering of Multi Dimensional Spatial Data,” Indian Journal of Computer Science and Engineering, vol. Vol 1 No 1, pp. 8–12, 2010, Accessed: Mar. 27, 2022. [Online].
A. J. Curtis and W. A. A. Lee, “Spatial patterns of diabetes related health problems for vulnerable populations in Los Angeles,” Int J Health Geogr, vol. 9, Aug. 2010, doi: 10.1186/1476-072X-9-43.
T. Tango and K. Takahashi, “A flexibly shaped spatial scan statistic for detecting clusters,” Int J Health Geogr, vol. 4, no. 1, pp. 1–15, May 2005,
https://doi: 10.1186/1476-072X-4-11/TABLES/6.
F. Zubedi, “Analisis Cluster Hasil Try Out Siswa Mts Alhuda Gorontalo Dengan Chi-Sim Cosimilarity Dan K-Means Clustering,” 2020.
F. Fania, M. Azzahra, and A. P. Windarto, “Analisis Metode Clustering Pada Wilayah BerdasarkanJenis Pencemaran Lingkungan Hidup,” 2020. [Online]. Available: https://www.bps.go.id.
B. Nurina Sari, A. Primajaya, and J. H. Ronggowaluyo Teluk Jambe Karawang, “Penerapan Clustering Dbscan Untuk Pertanian Padi Di Kabupaten Karawang,” 2019. [Online]. Available: www.mapcoordinates.net/en.
S. Zhu and P. Bao, “The use of Geographic Information System in the development and utilization of ancient local chronicles,” Library Hi Tech, vol. 33, no. 3, pp. 356–368, Sep. 2015.
https://doi: 10.1108/LHT-03-2015-0028.
R. K. Dinata, S. Retno, and N. Hasdyna, “Minimization of the Number of Iterations in K-Medoids Clustering with Purity Algorithm,” Revue d’Intelligence Artificielle, vol. 35, no. 3, pp. 193–199, Jun. 2021.
https:// doi: 10.18280/RIA.350302.
Luhung Mustika Budiharti and S. Sunendiari, “Pemodelan dan Pemetaan Jumlah Penderita Kusta di Jawa Barat dengan Regresi Binomial Negatif dan Flexibly Shaped Spatial Scan Statistic,” Jurnal Riset Statistika, vol. 1, no. 2, pp. 99–106, Dec. 2021.
https://doi: 10.29313/jrs.v1i2.409.
T. N. Hikmaulida, M. N. Hayati, and S. Wahyuningsih, “Analisis Spasial Persebaran Dan Pemetaan Kerawanan Daerah Titik Panas Di Kalimantan Timur Menggunakan Spatial Pattern Analysis Dan Flexibly Shaped Spatial Scan Statistic,” 2020. [Online]
http://jurnal.fmipa.unmul.ac.id/index.php/ppj/indexHalaman|20
N. Ulinnhua and S. A. Sholihah, “Analisis Cluster Untuk Pemetaan Data Kasus Covid-19 Di Indonesia Menggunakan K -Means,” Jurnal Matematika dan Statistika serta Aplikasinya (Jurnal MSA), vol. Vol. 09 No.2, pp. 14–18, 2021.
B. Liu, Y. Xin, R. C. C. Cheung, and H. Yan, “GPU-based biclustering for microarray data analysis in neurocomputing,” Neurocomputing, vol. 134, pp. 239–246, Jun. 2014.
https:// doi: 10.1016/J.NEUCOM.2013.06.049.
M. Douider, I. Amrani, T. Balenghien, A. Bennouna, and M. Abik, “Impact of recursive feature elimination with cross-validation in modeling the spatial distribution of three mosquito species in Morocco,” Revue d’Intelligence Artificielle, vol. 36, no. 6, pp. 855–862, Dec. 2022.
https://doi: 10.18280/RIA.360605.
T. I. Hermanto and M. A. Sunandar, “Analisis Data Sebaran Penyakit Menggunakan Algoritma Density Based Spatial Clustering of Applications With Noise,” Nov. 2020. Accessed: Jan. 29, 2023. [Online]. Available: https://doi.org/10.33084/jsakti.v3i1.1775
P. Verma, V. K. Awasthi, and S. K. Sahu, “A novel design of classification of coronary artery disease using deep learning and data mining algorithms,” Revue d’Intelligence Artificielle, vol. 35, no. 3, pp. 209–215, Jun. 2021.
https://doi: 10.18280/RIA.350304.
M. Gaonkar and K. Sawant, “AutoEpsDBSCAN : DBSCAN with Eps Automatic for Large Dataset,” 2013.
N. Ahmed and A. Razak T, “An Overview of Various Improvements of DBSCAN Algorithm in Clustering Spatial Databases,” International Journal of Advanced Research in Computer and Communication Engineering, vol. 5, no. 2, pp. 360–363, 2016.
Y. Chen, “New Approaches for Calculating Moran’s Index of Spatial Autocorrelation,” PLOS ONE, vol. 8, no. 7, p. e68336, Jul. 2013. https://doi: 10.1371/journal.pone.0068336.
Copyright (c) 2023 Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi)
This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright in each article belongs to the author
- The author acknowledges that the RESTI Journal (System Engineering and Information Technology) is the first publisher to publish with a license Creative Commons Attribution 4.0 International License.
- Authors can enter writing separately, arrange the non-exclusive distribution of manuscripts that have been published in this journal into other versions (eg sent to the author's institutional repository, publication in a book, etc.), by acknowledging that the manuscript has been published for the first time in the RESTI (Rekayasa Sistem dan Teknologi Informasi) journal ;