Detecting Alter Ego Accounts using Social Media Mining
Abstract
Alter ego is a condition of someone who creates a new character with a conscious state. Original character role play is a game to create new imaginary characters that is used as research material for identification alter ego accounts. The negative effects of playing alter ego are stress, depression, and multiple personalities. Current research only focuses on the phenomenon and impacts of a role-playing game. We propose a new method to detect accounts of alter ego players in social media, especially Twitter. We develop an application to analyze the characteristics of alter ego accounts. Psychologists can use this application to discover the characteristics of alter ego accounts that are useful for analyzing personality so that the results can be used to appropriately handle alter ego players. Most user profiles, tweets, and platforms are used to detect account Twitter. This research proposes a new method using bio features as input data. We crawled and collected 565 bios from Twitter for one month. We observe the data to search for unique words and collect them into a classification dictionary. In this research, we use the cosine similarity method because this method is popular for detecting text and has a good performance in many cases. This research could identify alter ego accounts and other types of Twitter accounts. From the detection results of alter ego accounts, it is possible to analyze the characteristics of Twitter accounts. We use a sampling technique that takes 30% of the data as testing data. According to the results of the experiment cosine similarity obtained an accuracy of 0.95.
Downloads
References
A. R. Putri, “Manajemen impresi pengguna akun alter ego di twitter pada akun fanbase @AlterBase18Plus,” pp. 1–26, 2021.
M. Saifulloh and A. Ernanda, “Manajemen Privasi Komunikasi Pada Remaja Pengguna Akun Alter Ego Di Twitter,” WACANA, J. Ilm. Ilmu Komun., vol. 17, no. 2, p. 235, 2018, doi: 10.32509/wacana.v17i2.652.
S. Maria and T. Daina, “Dramaturgi Dalam Alter Account Di Twitter Dramaturgy in Alter Account on Twitter,” no. 2, pp. 140–148, 2022.
P. A. J. Retasari Dewi, “Dramaturgi Dalam Media Sosial : Second Acount di Instagram Sebagai Alter Ego,” J. Ilmu Komun., vol. 8, no. 3, pp. 340–347, 2018.
E. K. I. P. Nuraini, “Peran roleplayer dalam membentuk identitas virtual di jejaring sosial line,” Univ. Muhammadiyah Surakarta, 2021.
R. Watrianthos, M. Giatman, W. Simatupang, R. Syafriyeti, and N. K. Daulay, “Analisis Sentimen Pembelajaran Campuran Pada Twitter Data Menggunakan Algoritma Naïve Bayes,” Analisis Sentimen Pembelajaran Campuran Pada Twitter Data Menggunakan Algoritma Naïve Bayes, vol. 6, no. 1, pp. 166–170, 2022, doi: http://dx.doi.org/10.30865/mib.v6i1.3383.
D. Hapsari, “Korean roleplayer dan dampaknya terhadap kepribadian di dunia nyata (studi kasus pada remaja),” Univ. Sebel. Maret, 2019.
A. P. Pratiwi, “Identitas virtual pada roleplayer di twitter,” vol. 1, pp. 215–227, 2023.
I. Inuwa-Dutse, B. S. Bello, and I. Korkontzelos, “Lexical analysis of automated accounts on twitter,” Proc. Int. Conf. WWW/Internet 2018 Appl. Comput. 2018, pp. 75–82, 2018.
K. S. Adewole, T. Han, W. Wu, H. Song, and A. K. Sangaiah, “Twitter spam account detection based on clustering and classification methods,” J. Supercomput., vol. 76, no. 7, pp. 4802–4837, 2020, doi: 10.1007/s11227-018-2641-x.
K. E. Daouadi, R. Z. Rebaï, and I. Amous, “Organization vs. individual: Twitter user classification,” CEUR Workshop Proc., vol. 2279, pp. 1–8, 2018.
M. Haidermota, “Classifying Twitter User As a Bot or Not and Comparing Different Classification Algorithms.,” Int. J. Adv. Res. Comput. Sci., vol. 9, no. 3, pp. 29–33, 2018, doi: 10.26483/ijarcs.v9i3.5949.
O. Loyola-Gonzalez, R. Monroy, J. Rodriguez, A. Lopez-Cuevas, and J. I. Mata-Sanchez, “Contrast Pattern-Based Classification for Bot Detection on Twitter,” IEEE Access, vol. 7, pp. 45800–45817, 2019, doi: 10.1109/ACCESS.2019.2904220.
S. R. I. Rezeki, “Penggunaan sosial media twitter dalam komunikasi organisasi (studi kasus pemerintah provinsi dki jakarta dalam penanganan covid-19),” J. Islam. Law Stud., vol. 04, no. 02, pp. 63–78, 2020.
D. N. Lindang, A. Y. Muniar, A. Halid, and A. Amiruddin, “Sistem Penentuan Kemiripan Antar Skripsi Menggunakan Metode Cosine Similarity Pada Perpustakaan,” pp. 321–324, 2022.
M. M. N-gram, A. Pradana, H. Sujaini, and H. Sasty, “Sistem Rekomendasi Artikel sebagai Acuan Studi Literatur Article Recommendation System as a Reference for Literature Studies Using the N-Gram Method,” vol. 01, no. 1, pp. 69–84, 2023, doi: 10.26418/juristi.v1i1.61170.
S. Khairunnisa, A. Adiwijaya, and S. Al Faraby, “Pengaruh Text Preprocessing terhadap Analisis Sentimen Komentar Masyarakat pada Media Sosial Twitter (Studi Kasus Pandemi COVID-19),” J. Media Inform. Budidarma, vol. 5, no. 2, p. 406, 2021, doi: 10.30865/mib.v5i2.2835.
H. Ma’rifah, A. P. Wibawa, and M. I. Akbar, “Klasifikasi Artikel Ilmiah Dengan Berbagai Skenario Preprocessing,” Sains, Apl. Komputasi dan Teknol. Inf., vol. 2, no. 2, p. 70, 2020, doi: 10.30872/jsakti.v2i2.2681.
Hanif Amal Robbani, “Sastrawi Library,” Python Package Index, 2023. https://pypi.org/project/Sastrawi/
R. Kartika, “Pengaruh Model Problem Centered Learning terhadap Kemampuan Menulis Puisi Kelas X SMK PAB 3 Medan Eetate,” J. Pendidik. Bhs. dan Sastra Indones., vol. 3, no. 1, pp. 60–67, 2018, [Online]. Available: https://journal.unnes.ac.id/sju/index.php/jpbsi/article/view/24018
D. Jatnika, M. A. Bijaksana, and A. A. Suryani, “Word2vec model analysis for semantic similarities in English words,” Procedia Comput. Sci., vol. 157, pp. 160–167, 2019, doi: 10.1016/j.procs.2019.08.153.
P. B. D. P. Nasional, Kamus Bahasa Indonesia. Pusat Bahasa, 2008. [Online]. Available: https://perpus.unimus.ac.id/wp-content/uploads/2012/05/Kamus-Besar-Bahasa-Indonesia.pdf
G. Hackeling, Mastering Machine Learning with scikit-learn. Packt Publishing Ltd., 2014. [Online]. Available: https://www.smallake.kr/wp-content/uploads/2017/03/Mastering-Machine-Learning-with-scikit-learn.pdf
Copyright (c) 2023 Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi)

This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright in each article belongs to the author
- The author acknowledges that the RESTI Journal (System Engineering and Information Technology) is the first publisher to publish with a license Creative Commons Attribution 4.0 International License.
- Authors can enter writing separately, arrange the non-exclusive distribution of manuscripts that have been published in this journal into other versions (eg sent to the author's institutional repository, publication in a book, etc.), by acknowledging that the manuscript has been published for the first time in the RESTI (Rekayasa Sistem dan Teknologi Informasi) journal ;