Sentiment Analysis of Cryptocurrency Trading Platform Service Quality on Playstore Data: A Case of Indodax

Bahasa Inggris

  • Kamrozi Universitas Indonesia
  • Achmad Nizar Hidayanto Universitas Indonesia
  • Krishna Yudhakusuma P.M. Universitas Indonesia
  • Muh. Alviazra Virgananda Universitas Indonesia
  • Ryan Randy Suryono Universitas Teknokrat Indonesia
Keywords: Service quality, Trading online cryptocurrency, indodax, google playstore data, Sentiment Analysis, lexicon classification method

Abstract

Indodax is one of the cryptocurrency trading platforms in Indonesia that has the highest sentiment for the quality they provide, good quality on a platform is an important factor in obtaining user satisfaction and will have an impact on the long-term success of a company. The importance of user satisfaction on cryptocurrency online trading platforms is a significant factor in increasing user loyalty in today's competition. This research was conducted to analyze the quality of existing cryptocurrency trading platform services so that they can be input for cryptocurrency trading service providers to improve the quality of their services, this information can also be considered by prospective platform users in choosing a trading platform that has the best quality of service to minimize losses that may be caused by the platform. In this study, sentiment analysis was used for indodax play store platform users and then processed using the lexicon classification method to produce sentiment analysis for each significant factor of service quality. From the results of the classification carried out in this study, the results of the analysis show that most users are satisfied and give positive sentiments related to security, namely 87.63%, positive sentiments related to the interface design 88.46%, positive sentiments related to service & convenience by 83%, but some users also gave a slightly positive sentiment related to administrative costs, namely 39%, and their negative sentiment was mostly related to the error & failure system, which received more than 80% sentiment. While the recall value is 38.07%, the precision is 56.69% and the f1-score is 45.55%. The results of this study can be concluded that there are still many important points that must be improved in quality by the indodax platform service providers so that they can be more attractive and used by everyone.

 

Downloads

Download data is not yet available.

References

Dinanto, "6 Alasan Untuk Teteap Menggunakan Cryptocorrency," 23 09 2020. [Online]. Available: https://kabarcoin.com/6-alasan-untuk-tetap-menggunakan-cryptocurrency/..

A. Giovanny, "7 Alasan Ini Buat Kehadiran Aset Crypto Bisa Mengubah Dunia," 22 03 2022. [Online]. Available: https://coinvestasi.com/beli-bitcoin/panduan/kegunaan/7-alasan-kehadiran-aset-crpto-bisa-mengubah-dunia..

Y. Andrianto and Y. Diputra, "The Effect pf Cryptocurrency on Investment Portfolio," Journal of Finance and Accounting, vol. 5, pp. 229-238, 2017.

A. Saraswati and K. D. N. Putri, "Legalitas PT. Indodax Nasional Indonesia sebagai Digital Asset Exchanges di Indonesia dan Perlindungan Hukum yang Diberikan terhadap Member Indodax," Universitas Gadjah Mada, 2018. [Online].

Indotelko, "Indodax dapatkan 3 sertifikat internasional," Indotelko, 1 Juli 2021," 01 07 2021. [Online]. Available: https://www.indotelko.com/read/1625097870/Indodax-dapatkan-3-sertifikat-internasional. [Accessed 22 03 2022].

Samsir, Kusmanto, Abdul Hakim Dalimunthe, Rahmad Aditiya, and Ronal Watrianthos, “Implementation Naïve Bayes Classification for Sentiment Analysis on Internet Movie Database,” Building of Informatics, Technology and Science (BITS), vol. 4, no. 1, pp. 1–6, Jun. 2022.

A. G. Awan and M. Azhar, "Perilaku Konsumen Terhadap Perbankan Syariah di Pakistan," Jurnal Eropa Audit Akuntansi dan Penelitian Keuangan, 2014.

I. R. Dewi, "Bos Indodax Soal Pajak Kripto: Kemahalan," CNBC Indonesia, 02 04 2022. [Online]. Available: https://www.cnbcindonesia.com/tech/20220404181547-37-328711/bos-Indodax-soal-pajak-kripto-kemahalan. [Accessed 16 08 2022].

H. Suhendi, "Indodax Tidak Menangani Keluhan dengan Baik," 18 03 2022. [Online]. Available: https://mediakonsumen.com/2022/03/18/surat-pembaca/Indodax-tidak-menangani-keluhan-dengan-baik.. [Accessed 16 08 2022].

detik.com, "Indodax Down! Belasan Jam Tak Bisa Diakses," detikFinance, 19 07 2022. [Online]. Available: https://finance.detik.com/fintech/d-6187216/Indodax-down-belasan-jam-tak-bisa-diakses. [Accessed 16 08 2022].

P. Kotler and K. L. Keller, "Manajemen Pemasaran," 2009.

H. S. Batubara, Ambiyar, Syahril, Fadhilah, and R. Watrianthos, “Sentiment Analysis of Face-To-Face Learning Based on Social Media,” Jurnal Pendidikan Teknologi Kejuruan, vol. 4, no. 3, pp. 102–106, 2021.

T. Nurhikmah, A. Fauzi, S. Cahyaningrum Tarmono Putri, D. Asmarani, V. Damayanti and R. Fitriani Thalitha, "Analisis Faktor-Faktor Yang Mempengaruhi Loyalitas," Ilmu Manajemen Terapan , vol. 3, no. 6, pp. 646-656, 2022.

C. Zhang and F. Pan, "Dampak Kepuasan Pengguna terhadap Profitabilitas: Sebuah studi tentang perusahaan milik negara di Cina," Service Science, vol. 1, 2009.

R. Leila Ramadlana and M. Najib, "Analisis Perbedaan Kualitas Pelayanan Listrik Pascabayar dan Listrik," Manajemen dan Organisasi, vol. VII, pp. 185-199, 2016.

J. Field, G. Heim and K. Sinha, "Mengelola kualitas dalam sistem e-service: pengembangan dan penerapan model proses," Manajemen produksi dan operasi, vol. 4, 2004.

M. Arief Satriajaya, H. Muslimah Az-Zahra and R. Indah Rokhmawati, "Evaluasi Usability dan Perbaikan Antarmuka Pengguna Situs Web VEDC/P4TK BOE Malang Menggunakan Questionnaire For User Interface Satisfaction(QUIS) dan Pendekata Human-Centered Design," Pengembangan Teknologi Informasi dan Ilmu Komputer, vol. 3, pp. 1107-1113, 2019.

A. Heryandi, "Pembangunan Sistem Informasi Pengisian Survey Evaluasi Perkuliahan Online Di Universitas Komputer Indonesia," Jurnal Ilmiah Komputer dan Informatika, vol. 1, 2012.

R. Azhar, A. Surahman and C. Juliane, "Analisis Sentimen Terhadap Cryptocurrency Berbasis Python TextBlob Menggunakan Algoritma Naïve Bayes," Sains Komputer & Informatika, vol. 6, pp. 267-281, 2022.

R. Parlika, S. I. Pradika, A. M. Hakim and K. Rachman, "Analisis Sentimen Twitter Terhadap Bitcoin dan Cryptocurrency Berbasis Python TextBlob," Ilmiah Teknologi Informasi dan Robotika, vol. 2, 2022.

Indotelko, "Cryptocurrency pikat masyarakat Indonesia untuk investasi," Indotelko, 17 10 2018. [Online]. Available: https://www.indotelko.com/read/1539733519/cryptocurrency-investasi. [Accessed 22 03 2022].

Z. Shafira, U. Khasanah and Y. Farida, "Analisis Performa Mata Uang Virtual (Cryptocurrency) Menggunakan Preference Ranking Organization Method for Enrichment Evaluation (Promethee)," 2021.

Arey and R. Sanjaya, "Analisis Pengaruh Kualitas Layanan Terhadap Kepuasan," Komputer & Informatika, vol. 9, pp. 214-222, 2021.

E. Martinez-Camara, M. T. Martin-Valdivia, L. A. Urena-Lopez and A. Montejo-Raez, "Sentiment analysis in Twitter," Cambridge University Press, vol. 20, pp. 1-28, 2012.

B. Liu, "Sentiment Analysis: Mining Options, Sentiments adn Emotions," Cambridge University Press, 2015.

T. Annisa, "Mengenal peran sentiment analysis beserta cara kerjanya," ekrut.com, 2020. [Online]. Available: https://www.ekrut.com/media/sentiment-analysisadalah. [Accessed 17 03 2022].

A. Sadia, F. Khan and F. Bashir, "An overview of lexicon-based approach for sentiment analysis," Int. Electr. Eng. Conference, pp. 1-6, 2018.

S. Thomas, Yuliana and Noviyanti, "Study Analysis of Sentiment Analysis Methods on YouTube," Information Technology, vol. 1, pp. 1-7, 2021.

O. S. T. T. P. T. P. &. A. T. Kolchyna, "Twitter sentiment analysis: Lexicon method, machine learning method and their combination," 2015.

T. Kanstren, "A Look at Precision, Recall, and F1-Score," Towards Data Science, 12 10 2020. [Online]. Available: https://towardsdatascience.com/a-look-at-precision-recall-and-f1-score-36b5fd0dd3ec. [Accessed 12 06 2022].

Martin and L. Nilawati, "Recall dan Precision Pada Sistem Temu Kembali Informasi Online Public Access Catalogue (OPAC) di Perpustakaan," Komputer dan Informatika Universitas Bina Sarana Informatika, vol. 21, pp. 77-84, 2019.

P. L. Pendit, "Perpustakaan Digital dari A sampai Z," 2008.

G. A. Buntoro, "Analisis Sentimen Calon Gubernur DKI Jakarta 2017 Di Twitter," Integer Journal Maret, vol. 1, pp. 32-41, 2017.

R. Mahendrajaya, G. A. Buntoro and M. Bhanu, "Analisis Sentimen Pengguna GOPAY Menggunakan Metode Lexicon Based Dan Support Vector Machine," KOMPUTEK, vol. 3, p. 52, 2019.

A. Choirun Najib, A. Irsyad, G. Assamar Qandi and N. A. Rakhmawati, "Perbandingan Metode Lexicon-based dan SVM untuk Analisis Sentimen Berbasis Ontologi pada Kampanye Pilpres Indonesia Tahun 2019 di Twitter," Fountain of Informatics, vol. 4, pp. 41-48, 2019.

G. Nur Aulia and E. Patriya, "Implementasi Lexicon Based Dan Naive Bayes Pada Analisis Sentimen Pengguna Twitter Topik Pemilihan Presiden 2019," Ilmiah Informatika Komputer, vol. 24, pp. 140-153, 2019.

C. Kaushik and A. Mishra, "A Scalable, Lexicon Based Technique For Sentiment AnalysiS," Foundations of Computer Science & Technology, vol. 4, pp. 35-43, 2014.

A. Janssen Dahu and I. Albanna, "Analisis Sentimen Masyarakat Pada Media Sosial Twitter Terhadap Penerapan New Normal Di Indonesia Menggunakan Metode Lexicon BaseD," vol. 6, pp. 201-206, 2021.

Yusrawati, "Strategi Pengembangan Sistem Temu Kembali Informasi Berbasis ”Image” di Perpustakaan Perguruan Tinggi," LIBRIA, vol. 9, pp. 53-68, 2017.

Z. L. K. &. G. S. Turner, "Lexicon- based sentiment analysis for stock movement prediction," Journal of Construction Materials, pp. 3-5.

M. D, K. U, E. P, U. P and S. T, "Analisis Sentimen terhadap Perkuliahan Daring di Indonesia dari Twitter Dataset Menggunakan InSet Lexicon," MALCOM: Indonesian Journal of Machine Learning and Computer Science, pp. 24-33, 2021.

A. R. B. S. &. S. B. Alaei, "Sentiment Analysis in Tourism: Capitalizing on Big Data," Journal of Travel Research, pp. 175-191, 2019.

Published
2023-06-01
How to Cite
Kamrozi, Achmad Nizar Hidayanto, Krishna Yudhakusuma P.M., Muh. Alviazra Virgananda, & Ryan Randy Suryono. (2023). Sentiment Analysis of Cryptocurrency Trading Platform Service Quality on Playstore Data: A Case of Indodax. Jurnal RESTI (Rekayasa Sistem Dan Teknologi Informasi), 7(3), 445 - 456. https://doi.org/10.29207/resti.v7i3.4769
Section
Information Technology Articles