Comparative Analysis of Support Vector Machine and Perceptron In The Classification of Subsidized Fuel Receipts

  • Jaka Tirta Samudra Universitas Potensi Utama
  • Rika Rosnelly Unviersitas Potensi Utama
  • Zakarias Situmorang Unviersitas Potensi Utama
Keywords: Data Mining, SVM, Perceptron, Klasifikasi, BBM

Abstract

Currently, fuel oil is one of the important factors for the community and even a country on this earth to utilize this natural gas fuel for daily use as the main use and also by increasing the community's need for fuel oil. But there are several factors that cause this fuel problem, there is a factor of time and usage time, which is certain that one day it will expire and its capacity in a country, even if the country runs out of fuel, will make requests to other countries and also obstacles to supplying this fuel oil to the public. which is the main fuel from the Pertamina government agency which has begun to limit purchases for this fuel oil to certain circles by marking the types of subsidies or not subsidies that must be controlled by the government in limiting purchases for the public. In dealing with solving problems from the perspective of ownership or even utilization, there are limits to owning fuel, and not everyone has to have a lot or even too much.  In solving the problem of dividing fuel revenue, which is good for filling revenue, it can be solved by using machine learning, namely data mining itself can help in completing subsidized fuel receipts without being excessive for the community so that they can be controlled and managed for their purchases. In building a fuel oil reception design, it can be grouped into a classification model that uses SVM and perceptron which uses the activation function of the sigmoid to get the final result of accuracy where getting the average value of 5-fold, 10-fold, 20-fold is accuracy. is 90.0%, the F1 value is 85.6%, the precision value is 87.6%, and the recall value is 90.0%.

Downloads

Download data is not yet available.

References

A. A. Nur, D. Wiryawan, and M. Al Amrie, “Kepuasan Konsumen Astra Motor Honda Tanjung Selor Terkait Pelayanan Showroom,” Plakat (Pelayanan Kpd. Masyarakat), vol. 2, no. 2, p. 109, 2020.

B. Hermawan and A. Faris Indriya Himawan, “Pembuktian Isu Kehilangan BBM Head Truck Depo Transhipment Pada PT. Berkah Multi Cargo Logistic,” Etn. J. Ekon. dan Tek., vol. 1, no. 5, pp. 357–363, 2022.

F. A. Akbar, “Pembuatan Aplikasi Berbasis Android Untuk Pengambilan Bbm (Bahan Bakar Minyak) Dengan Menggunakan Fitur Qr Code,” J. Inform. dan Sist. Inf., vol. 1, no. 2, pp. 422–431, 2020.

R. M. Kosanke, “Analisis Kelangkaan Bbm Premium Di Padangsidimpuan Perspektif Hukum Positif Dan Hukum Ekonomi Syariah,” J. Huk. Ekon., vol. 7, no. 1, pp. 56–76, 2019.

D. Putu et al., “Implementasi Pasal 23 Ayat (1) Undang-Undangnomor 22 Tahun 2001 Tentang Minyak Dan Gas Bumiterkait Penjualan Bahan Bakar Eceran Ilegal Di Desa Sangsit Kabupaten Buleleng,” Komunitas Yust. Univ. Pendidik. Ganesha, vol. 4, no. 2, pp. 312–321, 2021.

G. R. Hrp and N. Aslami, “Analisis Dampak Kebijakan Perubahan Publik Harga BBM terhadap Perekonomian Rakyat Indonesia,” J. Ilmu Komputer, Ekon. dan Manaj., vol. 2, no. 1, pp. 1464–1474, 2022.

P. Inflasi, S. Bbm, and D. A. N. Anggaran, “Pengaruh Inflasi, Subsidi Bbm, Dan Anggaran Infrastruktur Terhadap Pertumbuhan Ekonomi,” Manaj. Kewirausahaan, vol. 18, no. 01, pp. 29–38, 2021.

B. Yanto, J. Jufri, A. Lubis, B. H. Hayadi, and E. Armita, NST, “Klarifikasi Kematangan Buah Nanas Dengan Ruang Warna Hue Saturation Intensity (Hsi),” INOVTEK Polbeng - Seri Inform., vol. 6, no. 1, p. 135, 2021.

K. Hulliyah, “Predicting Airline Passenger Satisfaction with Classification Algorithms,” IJIIS Int. J. Informatics Inf. Syst., vol. 4, pp. 82–94, Mar. 2021.

K. S. Prawiro and D. Agfazar, “Analisis Antrian Sepeda Motor pada SPBU Tanah Merdeka Menggunakan Simulasi Promodel,” Bull. Appl. Ind. Eng. Theory, vol. 2, no. 1, pp. 28–31, 2020.

R. I. Liperda, I. K. Hardianti, I. N. Widyah, N. A. Fadjri, and R. R. Agustin, “Simulasi-Optimasi Sistem Transportasi Penentuan Kebutuhan Truk Tangki Pada Proses Distribusi BBM : Studi Kasus TBBM Plumpang,” vol. 9, no. 2, 2022.

A. Wanto et al., “Forecasting the Export and Import Volume of Crude Oil, Oil Products and Gas Using ANN,” J. Phys. Conf. Ser., vol. 1255, no. 1, 2019.

B. H. Hayadi, I. G. I. Sudipa, and A. P. Windarto, “Model Peramalan Artificial Neural Network pada Peserta KB Aktif Jalur Pemerintahan menggunakan Artificial Neural Network Back-Propagation,” MATRIK J. Manajemen, Tek. Inform. dan Rekayasa Komput., vol. 21, no. 1, pp. 11–20, 2021.

H. A. G. Al-kaf, K. S. Chia, and N. A. M. Alduais, “A comparison between single layer and multilayer artificial neural networks in predicting diesel fuel properties using near infrared spectrum,” Pet. Sci. Technol., vol. 36, no. 6, pp. 411–418, 2018.

B. Yanto, B. -, J. -, and B. H. Hayadi, “Indentifikasi Pola Aksara Arab Melayu Dengan Jaringan Syaraf Tiruan Convolutional Neural Network (Cnn),” JSAI (Journal Sci. Appl. Informatics), vol. 3, no. 3, pp. 106–114, 2020.

A. Roihan, P. A. Sunarya, and A. S. Rafika, “Pemanfaatan Machine Learning dalam Berbagai Bidang: Review paper,” IJCIT (Indonesian J. Comput. Inf. Technol., vol. 5, no. 1, pp. 75–82, 2020.

I. C. R. Drajana, “Metode Support Vector Machine Dan Forward Selection Prediksi Pembayaran Pembelian Bahan Baku Kopra,” Ilk. J. Ilm., vol. 9, no. 2, pp. 116–123, 2017.

M. R. Adrian, M. P. Putra, M. H. Rafialdy, and N. A. Rakhmawati, “Perbandingan Metode Klasifikasi Random Forest dan SVM Pada Analisis Sentimen PSBB,” J. Inform. Upgris, vol. 7, no. 1, pp. 36–40, 2021.

N. Fitriyah, B. Warsito, and D. A. I. Maruddani, “Analisis Sentimen Gojek Pada Media Sosial Twitter Dengan Klasifikasi Support Vector Machine (Svm,” J. Gaussian, vol. 9, no. 3, pp. 376–390, 2020.

A. N. Iffah’da and Anita Desiani, “Implementasi Algoritma K-Nearest Neighbor (K-NN) dan Single Layer Perceptron (SLP) Dalam Prediksi Penyakit Sirosis Biliari Primer,” J. Ilm. Inform., vol. 7, no. 1, pp. 65–74, 2022.

E. Yuliani, A. N. Aini, and C. U. Khasanah, “Perbandingan Jumlah Epoch Dan Steps Per Epoch Pada Convolutional Neural Network Untuk Meningkatkan Akurasi Dalam Klasifikasi Gambar,” J. Inf. Politek. Indonusa Surakarta, vol. 5, no. 2442–7942, pp. 2–6, 2019.

Y. U. Budiman et al., “Identifikasi Kata Benda Dan Bukan Kata Benda Menggunakan,” vol. 01, no. 5, pp. 759–768, 2022.

E. Supriyadi, “Prediksi Parameter Cuaca Menggunakan Deep Learning Long-Short Term Memory (Lstm),” J. Meteorol. dan Geofis., vol. 21, no. 2, p. 55, 2021.

S. Susilawati and M. Muhathir, “Analisis Pengaruh Fungsi Aktivasi, Learning Rate Dan Momentum Dalam Menentukan Mean Square Error (MSE) Pada Jaringan Saraf Restricted Boltzmann Machines (RBM),” J. Informatics Telecommun. Eng., vol. 2, no. 2, p. 77, 2019.

H. Dalianis, “Evaluation Metrics and Evaluation,” Clin. Text Min., no. 1967, pp. 45–53, 2018.

Published
2023-06-02
How to Cite
Samudra, J. T., Rosnelly, R., & Situmorang, Z. (2023). Comparative Analysis of Support Vector Machine and Perceptron In The Classification of Subsidized Fuel Receipts. Jurnal RESTI (Rekayasa Sistem Dan Teknologi Informasi), 7(3), 652 - 656. https://doi.org/10.29207/resti.v7i3.4731
Section
Information Systems Engineering Articles