Improving AI Text Recognition Accuracy with Enhanced OCR For Automated Guided Vehicle

  • Florentinus Budi Setiawan Universitas Katolik Soegijapranata Semarang
  • Farrel Adriantama Universitas Katolik Soegijapranata Semarang
  • Leonardus Heru Pratomo Universitas Katolik Soegijapranata Semarang
  • Slamet Riyadi Universitas Katolik Soegijapranata Semarang
Keywords: OCR, AGV, Image Processing, Computer Vision, AI

Abstract

This artificial intelligence robot uses a mini-computer to operate it and uses mechanical movement like a four-wheeled vehicle with a 2WD drive system. In this article, a control strategy of the AGV robot will be shown and implemented to detect the location. This research Uses OCR (Optical Character Recognition) for the OpenCV library itself which has been enhanced/modified. This enhanced OCR is the main library used in text recognition. This research produces very accurate text detection compared to the default OCR that was previously used on the AGV robot in our university. After the process of reading this text is passed, it will produce text previously read through the camera which will then provide output in the form of text where the AGV robot is located. After the reading is validated, the AGV robot will move to the next point until it returns to its starting point. Based on hardware implementation through testing in the AGV laboratory with artificial intelligence, it can work according to the algorithm and minimize reading errors with a 95% success rate.

Downloads

Download data is not yet available.

References

S. Vechet, J. Krejsa, and K. S. Chen, “AGVs mission control support in smart factories by decision networks,” Proc. 2020 19th Int. Conf. Mechatronics - Mechatronika, ME 2020, no. 1, pp. 3–6, 2020, doi: 10.1109/ME49197.2020.9286465.

J. Zhang and X. Liu-Henke, “Model-based design of the vehicle dynamics control for an omnidirectional automated guided vehicle (AGV),” 15th Int. Conf. Mechatron. Syst. Mater. MSM 2020, pp. 1–6, 2020, doi: 10.1109/MSM49833.2020.9202248.

H. Song, “The Application of Computer Vision in Responding to the Emergencies of Autonomous Driving,” Proc. - 2020 Int. Conf. Comput. Vision, Image Deep Learn. CVIDL 2020, no. Cvidl, pp. 1–5, 2020, doi: 10.1109/CVIDL51233.2020.00008.

X. Zhou, T. Chen, and Y. Zhang, “Research on Intelligent AGV Control System,” Proc. 2018 Chinese Autom. Congr. CAC 2018, no. 1, pp. 58–61, 2019, doi: 10.1109/CAC.2018.8623384.

Y. Li and Y. Zhang, “Application research of computer vision technology in automation,” Proc. - 2020 Int. Conf. Comput. Inf. Big Data Appl. CIBDA 2020, pp. 374–377, 2020, doi: 10.1109/CIBDA50819.2020.00090.

K. Afsari and M. Saadeh, “Artificial Intelligence Platform for Low-Cost Robotics,” 2020 3rd Int. Conf. Signal Process. Inf. Secur. ICSPIS 2020, pp. 4–7, 2020, doi: 10.1109/ICSPIS51252.2020.9340156.

Y. Ma, B. Jiang, and V. Cocquempot, “Modeling and Adaptive Fault Compensation for Two Physically Linked 2WD Mobile Robots,” IEEE/ASME Trans. Mechatronics, vol. 26, no. 2, pp. 1161–1171, 2021, doi: 10.1109/TMECH.2021.3052900.

Y. M. Su, H. W. Peng, K. W. Huang, and C. S. Yang, “Image processing technology for text recognition,” Proc. - 2019 Int. Conf. Technol. Appl. Artif. Intell. TAAI 2019, pp. 1–5, 2019, doi: 10.1109/TAAI48200.2019.8959877.

X. Zhang and S. Xu, “Research on Image Processing Technology of Computer Vision Algorithm,” Proc. - 2020 Int. Conf. Comput. Vision, Image Deep Learn. CVIDL 2020, no. Cvidl, pp. 122–124, 2020, doi: 10.1109/CVIDL51233.2020.00030.

M. S. Akopyan, O. V. Belyaeva, T. P. Plechov, and D. Y. Turdakov, “Text Recognition on Images from Social Media,” Proc. - 2019 Ivannikov Meml. Work. IVMEM 2019, pp. 3–6, 2019, doi: 10.1109/IVMEM.2019.00006.

G. Vaidya, K. Vaidya, and K. Bhosale, “Text recognition system for visually impaired using portable camera,” 2020 Int. Conf. Converg. to Digit. World - Quo Vadis, ICCDW 2020, no. Iccdw, pp. 1–4, 2020, doi: 10.1109/ICCDW45521.2020.9318706.

T. T. H. Nguyen, A. Jatowt, M. Coustaty, N. Van Nguyen, and A. Doucet, “Post-OCR error detection by generating plausible candidates,” Proc. Int. Conf. Doc. Anal. Recognition, ICDAR, pp. 876–881, 2019, doi: 10.1109/ICDAR.2019.00145.

J. Zhang et al., “A perspective transformation method based on computer vision,” Proc. 2020 IEEE Int. Conf. Artif. Intell. Comput. Appl. ICAICA 2020, pp. 765–768, 2020, doi: 10.1109/ICAICA50127.2020.9182641.

I. Ahmad, I. Moon, and S. J. Shin, “Color-to-grayscale algorithms effect on edge detection - A comparative study,” Int. Conf. Electron. Inf. Commun. ICEIC 2018, vol. 2018-January, pp. 1–4, 2018, doi: 10.23919/ELINFOCOM.2018.8330719.

Z. Zhong, L. Sun, and Q. Huo, “Improved Localization Accuracy by LocNet for Faster R-CNN Based Text Detection,” Proc. Int. Conf. Doc. Anal. Recognition, ICDAR, vol. 1, pp. 923–928, 2017, doi: 10.1109/ICDAR.2017.155.

L. Yang, D. Ergu, Y. Cai, F. Liu, and B. Ma, “A review of natural scene text detection methods,” Procedia Comput. Sci., vol. 199, pp. 1458–1465, 2021, doi: 10.1016/j.procs.2022.01.185.

X. Li and Y. Shi, “Computer vision imaging based on artificial intelligence,” Proc. - 2018 Int. Conf. Virtual Real. Intell. Syst. ICVRIS 2018, pp. 22–25, 2018, doi: 10.1109/ICVRIS.2018.00014.

F. Utaminingrum et al., “Development of computer vision based obstacle detection and human tracking on smart wheelchair for disabled patient,” 5th Int. Symp. Comput. Bus. Intell. ISCBI 2017, pp. 1–5, 2017, doi: 10.1109/ISCBI.2017.8053533.

N. Gupta and N. Goyal, “Machine Learning Tensor Flow Based Platform for Recognition of Hand Written Text,” 2021 Int. Conf. Comput. Commun. Informatics, ICCCI 2021, 2021, doi: 10.1109/ICCCI50826.2021.9402622.

T. T. H. Nguyen, A. Jatowt, M. Coustaty, N. Van Nguyen, and A. Doucet, “Deep statistical analysis of OCR errors for effective post-OCR processing,” Proc. ACM/IEEE Jt. Conf. Digit. Libr., vol. 2019-June, no. 1, pp. 29–38, 2019, doi: 10.1109/JCDL.2019.00015.

M. A. Panhwar, K. A. Memon, A. Abro, D. Zhongliang, S. A. Khuhro, and S. Memon, “Signboard detection and text recognition using artificial neural networks,” ICEIEC 2019 - Proc. 2019 IEEE 9th Int. Conf. Electron. Inf. Emerg. Commun., pp. 16–19, 2019, doi: 10.1109/ICEIEC.2019.8784625.

Y. Qin and Z. Zhang, “Summary of Scene Text Detection and Recognition,” Proc. 15th IEEE Conf. Ind. Electron. Appl. ICIEA 2020, pp. 85–89, 2020, doi: 10.1109/ICIEA48937.2020.9248121.

Florentinus Budi Setiawan, F. A. Kurnianingsih, Slamet Riyadi, and Leonardus Heru Pratomo, “Pattern Recognition untuk Deteksi Posisi pada AGV Berbasis Raspberry Pi,” J. Nas. Tek. Elektro dan Teknol. Inf., vol. 10, no. 1, pp. 49–56, 2021, doi: 10.22146/jnteti.v10i1.738.

F. B. Setiawan, O. J. Aldo Wijaya, L. H. Pratomo, and S. Riyadi, “Sistem Navigasi Automated Guided Vehicle Berbasis Computer Vision dan Implementasi pada Raspberry Pi,” J. Rekayasa Elektr., vol. 17, no. 1, pp. 7–14, 2021, doi: 10.17529/jre.v17i1.18087.

Published
2022-10-01
How to Cite
Florentinus Budi Setiawan, Adriantama, F., Leonardus Heru Pratomo, & Slamet Riyadi. (2022). Improving AI Text Recognition Accuracy with Enhanced OCR For Automated Guided Vehicle . Jurnal RESTI (Rekayasa Sistem Dan Teknologi Informasi), 6(5), 728 - 734. https://doi.org/10.29207/resti.v6i5.4279
Section
Artikel Teknologi Informasi