Sistem Pengukuran Suhu Tubuh Menggunakan AMG8833 Dan Kinect Sebagai Pencegahan Penularan Covid-19
Body Temperature Measurement System Using AMG8833 And Kinect As Prevention Of Covid-19
Abstract
The purpose of this study is to create an effective and safe body temperature measurement system to prevent the transmission of covid-19 using the AMG8833 and Kinect. The method of sending data uses the Internet of Thing (IoT) and face tracking with 3D form as face identification using a kinect type xbox 360 using an arduino uno and a buzzer connected to the AMG8833. AMG8833 has an infrared detector which is arranged in an 8x8 array and reads body temperature non-contact by detecting infrared energy from the body. kinect recognizes facial features based on the distance of the kinect position coordinates on the face. AMG8833 and kinect as input, Arduino uno as AMG8833 data processing and buzzer gives a sound signal if the temperature is above 37.10 0C. Body temperature measurement data was carried out 3 times, namely at a distance of 5,10 and 15cm. Measurement data from this body temperature measuring instrument are compared with a thermogun average error value of 0.11% with a difference between the maximum and minimum average body temperatures of 0.04%. It is hoped that body temperature measurements can be as a precaution against the spread of covid-19.
Downloads
References
[2] Ceraolo, C., & M. Giorgi, F. (2020). Phylogenomic analysis of the 2019-nCoV coronavirus. Journal of Medical Virology, 1-7 .
https://doi.org/10.1002/jmv.25700
[3] Vasantharao, G., & Arifunneesa, S. (2020). Temperature Detection and Automatic Sanitization. The International journal of analytical and experimental modal analysis, XII(VI), 1175-1181. http://www.ijaema.com/gallery/125-ijaema-june-4113
[4] Singhal, T. (2020). A Review of Coronavirus Disease-2019 (COVID-19). The Indian Journal of Pediatrics, 87(4), 1-6. doi: 10.1007/s12098-020-03263-6
[5] Han, Y., & Yang, H. (2020). The transmission and diagnosis of 2019 novel coronavirus. Journal Of Medical Virology, 92(6), 639-644. DOI:10.1002/jmv.25749
[6] Susilo, A., Rumende, C., Pitoyo, C., Santoso, W. D., Yulianti, M., Herikurniawan, et al. (2020). Coronavirus Disease 2019: Review of Current Literatures. Jurnal Penyakit Dalam Indonesia, Universitas Indonesia, 7(1), 45-67.
http://dx.doi.org/10.7454/jpdi.v7i1.415RI
[7] W Widhiada., I N G Antara., I N Budiarsa., I M G Karohika. (2018). The Robust PID Control System of Temperature Stability and Humidity on Infant Incubator Based on Arduino AT Mega 2560. International Conference on SMART CITY Innovation 2018. IOP Conf. Series: Earth and Environmental Science 248 (2019) 012046 IOP Publishing.
doi:10.1088/1755-1315/248/1/012046
[8] Alvianto Wahyu Pribadi. (2013) .“Prototipe Termometer Digital Dengan Keluaran Suara Berbasis Mikrokontroler Atmega16”, Jurnal Inovasi Fisika Indonesia Vol.02 No.03 Tahun 2013 11-13. https://ejournal.unesa.ac.id/
[9] Meilia Safitri, Gusti Arya Dinata. (2019) . “Non Contact Thermometer Berbasis Infra Merah”, Jurnal SIMETRIS, Vol. 10 No. 1 April 2019.
[10] Abdul Haris Kuspranoto, Frada Oktaruli Sinaga.(2021). Monitoring Suhu Tubuh dengan Output Suara Berbasis ESP-32CAM. Medika Teknika : Jurnal Teknik Elektromedik Indonesia, Vol 03 No. 1.
https://journal.umy.ac.id/index.php/mt/article/view/11980.
doi.org/10.18196/mt.v3i1.11980
[11] Rindi Wulandari. (2020). Rancang Bangun Pengukur Suhu Tubuh Berbasis Arduino Sebagai Alat Deteksi Awal Covid-19, Prosiding SNFA (Seminar Nasional Fisika dan Aplikasinya) 2020.
https://doi.org/10.20961/prosidingsnfa.v5i0.46610
[12] Unang Achlison. (2020). Analisis Implementasi Pengukuran Suhu Tubuh Manusia dalam Pandemi Covid-19 di Indonesia. Pixel :Jurnal Ilmiah Komputer Grafis, 13(2), 102-106.
https://journal.stekom.ac.id/index.php/pixel/article/view/318
[13] RI, K. K. (2020). Pedoman Pencegahan Dan Pengendalian Coronavirus Disesase. (KMK_No__HK_01_07-MENKES-382) Jakarta: Direktorat Jenderal Pencegahan dan Pengendalian Penyakit.
https://covid19.kemkes.go.id
[14] Putranto, T. A. (2020, Juli 24). Keputusan Menteri Ksehehatan Republik Indonesia Tentang Protokol Kesehatan Bagi Masyarakat Di Tempat Dan Fasilitas Umum Dalam Rangka Pencegahan Dan Pengendalian Corona Virus Disease 2019 (COVID-19). Direktorat promosi kesehatan dan Pemberdayaan Masyarakat, hal. 1-66.
http://hukor.kemkes.go.id
[15] Sohrabi, C., Alsafi, Z., O'Neill , N., Khan, M., Kerwan, A., Al-Jabir , A., et al. (2020). World Health Organization declares global emergency: A review of the 2019 novel coronavirus (COVID-19). International Journal of Surgery, 71-76.
https://doi.org/10.1016/j.ijsu.2020.02.034
[16] Tan, T. F., Teoh, S. S., Fow, J. E., Yen, K. S., Tan, Teoh, et al. (2016). Embedded Human Detection System Based on. 2016 IEEE Conference on Systems, Process and Control (ICSPC 2016) (hal. 37-42). Malaysia: Universiti Sains Malaysia, USM Engineering Campus.
doi: 10.1109/SPC.2016.7920700
[17] Nishi, K., Demura, M., Miura, J., Oishi, S., Nishi, Demura, et al. (2017). Use of Thermal Point Cloud for Thermal Comfort Measurement and. 2017 IEEE International Conference on Computer Vision Workshops (hal. 1416-1423). Toyohashi University of Technology:
DOI 10.1109/ICCVW.2017.168
[18] Carmody, T. (2010, November 3). How Motion Detection Works in Xbox Kinect. Retrieved January 18, 2015 from http://www.wired.com/gadgetlab/2010/11/tonights-releasexbox-kinect-how-does-itwork
[19] Catuhe, David. 2012. Programming with the Kinect for Windows Software Development Kit. United States of America.
[20] Klug, B. (2010, December 9). Microsoft Kinect review. Retrieved January 18, 2015. http://www.anandtech.com/show/4057/microsoft-kinect-theanandtechreview/2
[21] Mathe, Z. (2011, May 27). Inside Kinect: Skeletal Tracking Deep Dive. Retrieved January 18, 2015.
http://www.microsoft.com/download/en/confirmation.aspx?id =26098
[22] Microsoft Research. [2011], Getting Started with the Kinect for Windows SDK Beta from Microsoft Research. Technical Report. Chicago: Microsoft Corporation. Beta 1 Draft Version 1.1.
[23] Nikolai Smolyanskiy, Christian Huitema, Lin Liang, Sean Eron Anderson. (2014). Real-time 3D face tracking based on active appearance model constrained by depth data. N. Smolyanskiy et al. Image and Vision Computing 32 (2014) 860–869.
http://dx.doi.org/10.1016/j.imavis.2014.08.005
Copyright (c) 2022 Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi)
This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright in each article belongs to the author
- The author acknowledges that the RESTI Journal (System Engineering and Information Technology) is the first publisher to publish with a license Creative Commons Attribution 4.0 International License.
- Authors can enter writing separately, arrange the non-exclusive distribution of manuscripts that have been published in this journal into other versions (eg sent to the author's institutional repository, publication in a book, etc.), by acknowledging that the manuscript has been published for the first time in the RESTI (Rekayasa Sistem dan Teknologi Informasi) journal ;