Perbandingan Kualitas Suara Smartphone Menggunakan Metode Dynamic Time Warping (DTW)

Keywords: DTW, sound quality, smartphone

Abstract

Smartphones are telecommunication devices that play a significant role in daily life. The sound quality produced by a smartphone becomes important for users, considering that poor sound quality might cause misunderstandings in communication. This study provides an illustration of the application of Dynamic Time Warping (DTW) in the comparison of the sound quality produced by a smartphone. In addition to the DTW, the median test and its confidence interval are also used to determine the sound quality of a smartphone. The data employed are primary data in the form of voice recordings of six people that saying five sample sentences, each of which is repeated five times through four different smartphone types that are used as examples. So that the total voice recordings for each smartphone are 150 pieces. This study aims to compare the sound quality produced by those smartphones. The results of this study indicate that although smartphones type 2, 3 and 4 have similar sound quality, the sound quality produced by smartphones type 4 is more stable than other types. Therefore, this study concludes the smartphone type 4 is the smartphone with the most satisfying sound quality. Furthermore, this study showed that the DTW method is effective in analyzing the sound quality of a smartphone.

 

Downloads

Download data is not yet available.

Author Biographies

Inas Salsabila, Universitas Syiah Kuala

Department of Statistics

Samsul Anwar, Universitas Syiah Kuala

Department of Statistics

Radhiah Radhiah, Universitas Syiah Kuala

Department of Mathematics

References

Shuib, L., Shamshirband, S., & Ismail, M. H., 2015. A review of mobile pervasive learning: Applications and issues. Computers in Human Behavior, 46, pp. 239–244.

O’Dea, S., 2020. Number of smartphone users worldwide from 2016 to 2021 (in billions). [Online] (update 10 December 2020). Available: https://www.statista.com/statistics/330695/number-of-smartphone-users-worldwide/. [Accessed: 10-Dec-2020].

BPS., 2019. Statistik Kesejahteraan Rakyat 2019. Jakarta: Badan Pusat Statistik.

Wahyudin, A., Amanaf, M. A., & Ratnasari, I. K., 2019. Perancangan dan Analisis LTE Advanced 850 Mhz untuk Meningkatkan Penetrasi Mobile Broadband di Indonesia. ELKOMIKA: Jurnal Teknik Energi Elektrik, Teknik Telekomunikasi, & Teknik Elektronika, 7(1), pp. 57–71. https://doi.org/10.26760/elkomika.v7i1.57.

Kemkominfo., 2017. Survey Penggunaan TIK 2017: Serta Implikasinya terhadap Aspek Sosial Budaya Masyarakat. Jakarta: Pusat Penelitian dan Pengembangan Aplikasi Informatika dan Informasi dan Komunikasi Publik, Kemkominfo.

OnoSokki., 2019. Technical Report: What is sound quality evaluation?. Yokohama: OnoSokki.

Yildirim, Ş., & Eski, I., 2008. Sound quality analysis of cars using hybrid neural networks. Simulation Modelling Practice and Theory, 16(4), pp. 410–418.

Yadav, M., & Alam, M. A., 2018. Dynamic Time Warping (DTW) Algorithm In Speech: A Review. International Journal of Research in Electronics and Computer Engineering, 6(1), pp. 524–528.

Dhingra, S., Nijhawan, G., & Pandit, P., 2013. Isolated speech recognition using MFCC and DTW. International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering, 2(8), pp. 4085–4092.

Ding, I. -J., Yen, C. -T., & Ou, D. -C., 2014. A Method to Integrate GMM, SVM and DTW for Speaker Recognition. International Journal of Engineering and Technology Innovation, 4(1), pp. 38–47.

Ariyanto, F., & Kusuma, W. A., 2018. Identifikasi Wajah Menggunakan Klasifikasi Dynamic Time Warping. Sistemasi: Jurnal Sistem Informasi, 7(2), pp. 162–168.

Lee, H. -S., 2019. Application of dynamic time warping algorithm for pattern similarity of gait. Journal of Exercise Rehabilitation, 15(4), pp. 526–530. https://doi.org/10.12965/jer.1938384.192.

Permanasari, Y., Harahap, E. H., & Ali, E. P., 2019. Speech recognition using Dynamic Time Warping (DTW). In Journal of Physics: Conference Series 1366, 2nd International Conference on Applied & Industrial Mathematics and Statistics. Pahang, Malaysia 23-25 July 2019. Institute of Physics Publishing Ltd: Bristol. https://doi.org/10.1088/1742-6596/1366/1/012091.

Prayoga, N. F. I., Astuti, Y., & Waluyo, C. B., 2019. Analisis Speaker Recognition Menggunakan Metode Dynamic Time Warping (DTW) Berbasis Matlab. Aviation Electronics, Information Technology, Telecommunication, Electricals, and Control, 1(1), pp. 77–85. https://doi.org/10.28989/avitec.v1i1.492.

Rahman, F. S., & Yuhefizar, Y., 2017. Aplikasi Virtual Kata Untuk Komunikasi Penyandang Tunarungu Berbasis Android. Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), 1(2), pp. 99–105. https://doi.org/10.29207/resti.v1i2.49.

Bhaskoro, S. B., Ariani, I., & Alamsyah, A. A., 2014. Transformasi Pitch Suara Manusia Menggunakan Metode PSOLA. ELKOMIKA: Jurnal Teknik Energi Elektrik, Teknik Telekomunikasi, & Teknik Elektronika, 2(2), pp. 129–151. https://doi.org/10.26760/elkomika.v2i2.129.

Silva, D. F., & Batista, G. E. A. P. A., 2016. Speeding up All-Pairwise Dynamic Time Warping Matrix Calculation. In 16th SIAM International Conference on Data Mining 2016. Florida, USA 5-7 May 2016. Society for Industrial and Applied Mathematics Publications: Philadelphia. https://doi.org/10.1137/1.9781611974348.94.

Muda, L., Begam, M., & Elamvazuthi, I., 2010. Voice Recognition Algorithms using Mel Frequency Cepstral Coefficient (MFCC) and Dynamic Time Warping (DTW) Techniques. Journal of Computing, 2(3), pp. 138–143.

Senin, P., 2008. Dynamic Time Warping Algorithm Review. Honolulu: University of Hawaii at Manoa.

Daniel, W. W., 2000. Applied Nonparametric Statistics. Second Edition. Massachusetts: Cengage Learning.

Hazra, A., 2017. Using the Confidence Interval Confidently. Journal of Thoracic Disease, 9(10), pp. 4125–4130. https://doi.org/10.21037/jtd.2017.09.14.

Rahmantara, D. S., Wardhani, K. D. K., & Saf, M. R. A., 2018. Aplikasi Pengenalan Nama Surah pada Juz ke 30 Kitab Suci Al-Qur’an Menggunakan Speech Recognition. Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), 2(1), pp. 345–353. https://doi.org/10.29207/resti.v2i1.285.

Bustamin, A., & Prayogi, A. A., 2019. Perbandingan Kinerja Filter Butterworth Berdasarkan Spesifikasi Frekuensi untuk Pengolahan Sinyal Suara. Techno.Com, 18(4), pp. 332–339. https://doi.org/10.33633/tc.v18i4.2714.

Published
2021-02-20
How to Cite
Salsabila, I., Anwar, S., & Radhiah, R. (2021). Perbandingan Kualitas Suara Smartphone Menggunakan Metode Dynamic Time Warping (DTW). Jurnal RESTI (Rekayasa Sistem Dan Teknologi Informasi), 5(1), 82 - 90. https://doi.org/10.29207/resti.v5i1.2764
Section
Artikel Teknologi Informasi