Prediksi Tinggi Permukaan Air Waduk Menggunakan Artificial Neural Network Berbasis Sliding Window

  • Dwi Kartini Universitas Lambung Mangkurat
  • Friska Abadi Universitas Lambung Mangkurat
  • Triando Hamonangan Saragih Universitas Lambung Mangkurat
Keywords: artificial neural network, sliding window, backpropagation, hidden layer, mse.

Abstract

The water level in the reservoir is an important factor in the operation of a hydroelectric turbine to control water overflow so that there is no excessive degradation. This water control has an influence on the performance and production of hydroelectric energy. The daily reservoir water level (tpaw) recording of PLTA Riam Kanan is carried out through a daily direct measurement and observation process on the reservoir measuring board which is recapitulated every month in excel form. This time series historical data continues to grow every day to become a data warehouse that is still useless if only stored. Extracting knowledge from the data warehouse can be done using one of the artificial neural network data mining techniques, namely backpropagation to predict the next day's tpaw. Historical data for the tpaw time series is presented with a sliding window concept approach based on the window sizes used, namely 7, 14, 21 and 28. The window size represents the number of days as an input layer variable in the backpropagation network architecture to predict the next day's tpaw. Some backpropagation network testing is carried out using a combination of the number of window sizes against the comparison of the amount of training data and test data on the network. The prediction results obtained with the smallest mean squared error (mse) in network testing is 0.000577 as a high accuracy value of the prediction results. The network architecture with the smallest mse using 28 input layers, 10 hidden layers and 1 output layer can be a knowledge that can help the hydropower plant as an alternative in making turbine operation decisions based on the predicted results of reservoir water level.

Downloads

Download data is not yet available.

References

D. Kartini, H. Rusdiani, dan A. Farmadi, “Analisis Pengaruh Banyak Orde pada Metode Multivariate High-Order Fuzzy Time Series untuk Prediksi Duga Muka Air Waduk,” J. Edukasi dan Penelit. Inform., vol. 5, no. 1, hal. 9, 2019.

Winasis, H. Prasetijo, dan G. A. Setia, “Optimasi Operasi Pembangkit Listrik Tenaga Air ( PLTA ) Menggunakan Linear Programming Dengan Batasan Ketersediaan Air Optimization of Hydro Power Plant Operation Using Linear Programming With Constraint of Water Availibility,” Din. Rekayasa, vol. 9, no. 2, hal. 1–6, 2013.

A. Purnama, “Studi Kelayakan Pembangunan Pembangkit Listrik Tenaga Mikrohidro Studi Kasus: PLTMH Minggir Pada Saluran Irigasi Minggir Di Padukuhan Klagaran Desa Sendangrejo Kecamatan Minggir Kabupaten Sleman,” UNSA Prog., vol. 10, no. 15, hal. 93–111, 2011.

Y. Yu, Y. Zhu, S. Li, dan D. Wan, “Time series outlier detection based on sliding window prediction,” Math. Probl. Eng., vol. 2014, 2014, doi: 10.1155/2014/879736.

Y. BenYahmed, A. Abu Bakar, A. RazakHamdan, A. Ahmed, dan S. M. S. Abdullah, “Adaptive sliding window algorithm for weather data segmentation,” J. Theor. Appl. Inf. Technol., vol. 80, no. 2, hal. 322–333, 2015.

M. Vafaeipour, O. Rahbari, M. A. Rosen, F. Fazelpour, dan P. Ansarirad, “Application of sliding window technique for prediction of wind velocity time series,” Int. J. Energy Environ. Eng., vol. 5, no. 2–3, hal. 1–7, 2014, doi: 10.1007/s40095-014-0105-5.

J. J. Siang, Jaringan Syaraf Tiruan Dan Pemrogramannya Dengan Matlab. Yogyakarta: Andi, 2005.

H. S. Hota, R. Handa, dan A. K. Shrivas, “Time Series Data Prediction Using Sliding Window Based RBF Neural Network,” Int. J. Comput. Intell. Res., vol. 13, no. 5, hal. 1145–1156, 2017, [Daring]. Tersedia pada: http://www.ripublication.com.

R. Handa, H. S. Hota, dan S. R. Tandan, “Stock Market Prediction with Various Technical,” vol. 3, no. 1, hal. 604–608, 2015.

A. Mulyani, “Analisis Neural Network Struktur Backpropagation Sebagai Metode Peramalan Pada Perhitungan Tingkat Kemiskinan Di Indonesia,” vol. XIII, no. 1, hal. 9–15, 2016.

M. Yanto, M. Liga, dan M.Hafizh, “Neural Network Backprogation Identifikasi Pola Harga Saham Jakarta Islamic Index (JII),” J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 4, no. 1, hal. 90–94, 2020.

N. Chamidah, M. M. Santoni, dan N. Matondang, “Pengaruh Oversampling pada Klasifikasi Hipertensi dengan Algoritma,” J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 4, no. 4, hal. 635–641, 2020.

I. M. D. U. Putra dan L. P. I. Gandhiadi, G. K.Harini, “Implementasi Backpropagation Neural Network Dalam Prakiraan Cuaca Di Daerah Bali Selatan,” E-Jurnal Mat., vol. 5, no. 4, hal. 126, 2016, doi: 10.24843/mtk.2016.v05.i04.p131.

S. Ibrahim, C. Choe Earn, dan A. El-Shafie, “Sensitivity analysis of artificial neural networks for just-suspension speed prediction in solid-liquid mixing systems: Performance comparison of MLPNN and RBFNN,” Adv. Eng. Informatics, vol. 39, hal. 278–291, Jan 2019, doi: 10.1016/j.aei.2019.02.004.

S. P. Siregar dan A. Wanto, “Analysis of Artificial Neural Network Accuracy Using Backpropagation Algorithm In Predicting Process (Forecasting),” IJISTECH (International J. Inf. Syst. Technol., vol. 1, no. 1, hal. 34, 2017, doi: 10.30645/ijistech.v1i1.4.

Published
2021-02-13
How to Cite
Dwi Kartini, Friska Abadi, & Triando Hamonangan Saragih. (2021). Prediksi Tinggi Permukaan Air Waduk Menggunakan Artificial Neural Network Berbasis Sliding Window. Jurnal RESTI (Rekayasa Sistem Dan Teknologi Informasi), 5(1), 39 - 44. https://doi.org/10.29207/resti.v5i1.2602
Section
Artikel Rekayasa Sistem Informasi