Algoritme Spatial Decision Tree untuk Evaluasi Kesesuaian Lahan Padi Sawah Irigasi

  • Andi Nurkholis Universitas Teknokrat Indonesia
  • Muhaqiqin Universitas Teknokrat Indonesia
  • Try Susanto Universitas Teknokrat Indonesia
Keywords: cuaca, interpolasi ordinary cokriging, karakteristik lahan, kesesuaian lahan, padi sawah irigasi, spatial decision tree


Agriculture has a strategic role in a country whereas food self-sufficiency being the main goal to be achieved. Indonesia has set a strategic plan for increasing the productivity of several commodities, including rice, especially irrigated lowland rice. That matter can be done by agricultural land extensification, which requires a land suitability directional map. This study aims to produce irrigated lowland rice land suitability maps which can be obtained by evaluation using spatial decision tree algorithm. The model is made in two different types, where model Y is an optimized version of model X. The dataset consists of two categories, namely eleven explanatory layers which are land and weather characteristics, and a target layer that represents irrigated lowland rice land suitability in study area of Grobogan Regency, Central Java Province. As an addition to planting requirements, two spatial weather datasets were generated using ordinary cokriging interpolation, which was not used in previous research, while actually being important element for determining plant timing an agricultural commodity. Based on accuracy, model Y is the best model with 96.67%, compared to model X with 86%. Both models make relief variable as the root node, but in spatial decision tree result, model X involves all variables, while model Y does not involve an elevation variable. The addition of weather variables in models is appropriate, as evidenced by the involvement in rules.


Download data is not yet available.


Bappenas, Proyeksi penduduk Indonesia 2010-2035. Jakarta (ID): Badan Pusat Statistik, 2013.

BKP, Panduan inventarisasi sumberdaya pangan. Jakarta (ID): Badan Ketahanan Pangan-Kementerian Pertanian, 2020.

Balitbangtan, Memperkuat kemampuan swasembada pangan, no. 1. Jakarta (ID): Badan Penelitian dan Pengembangan Pertanian-IAARD Press, 2015.

G. Leach, Global land and food in the 21st century: trends and issues for sustainability, 5th ed., no. 5. Sweden: Stockholm Environtment Institute, 1995.

BPPSDMP, “Rencana strategis 2015 –2019, edisi revisi kedua,” Jakarta (ID), 2017. [Online]. Available: BPPSDMP 2015-2019.pdf.

Pusdatin, Outlook komoditas pertanian sub sektor tanaman pangan, padi. Jakarta (ID): Pusat Data dan Sistem Informasi Pertanian-Kementerian Pertanian, 2016.

Distanbun Jateng, “Statistik tanaman pangan Jawa Tengah 2015,” Dinas Pertanian Tanaman Pangan dan Hortikultura Provinsi Jawa Tengah, Semarang (ID), 2015. [Online]. Available: TP 2015.pdf.

R. Rahmadiah, F. Tanjung, and R. Hariance, “Analisis perbandingan usahatani padi sawah irigasi dengan padi sawah tadah hujan di Kecamatan Koto Tangah Kota Padang,” JOSETA J. Socio Econ. Tripical Agric., vol. 1, no. 3, pp. 9–23, 2019, doi:

Balitbangtan, Sumber daya lahan pertanian Indonesia: luas, penyebaran, dan potensi ketersediaan, 2015th ed. Jakarta (ID): Badan Penelitian dan Pengembangan Pertanian-IAARD Press, 2015.

BBSDLP, Atlas peta kesesuaian lahan dan arahan komoditas pertanian pertanian, Kabupaten Bogor, Provinsi Jawa Barat, skala 1:50.000, 2nd ed. Bogor (ID): Badan Penelitian dan Pengembangan Pertanian, Kementerian Pertanian, 2016.

D. Djaenudin, M. H., S. H., and A. Hidayat, Petunjuk teknis evaluasi lahan untuk komoditas pertanian, 2nd ed. Bogor (ID): Badan Penelitian dan Pengembangan Pertanian, 2011.

K. Akpoti, A. T. Kabo-bah, and S. J. Zwart, “Agricultural land suitability analysis: State-of-the-art and outlooks for integration of climate change analysis,” Agric. Syst., vol. 173, no. July, pp. 172–208, 2019, doi: 10.1016/j.agsy.2019.02.013.

S. Pariamanda and A. Sukmono, “Analisis kesesuaian lahan untuk perkebunan kopi di kabupaten semarang,” J. Geod. Undip Januari, vol. 5, no. 1, pp. 116–124, 2016.

F. S. Harahap, R. Sitompul, A. Rauf, Rahmawaty, D. E. Harahap, and H. Walida, “Land suitability evaluation for oil palm plantations (Elaeisguenensis jacq) on Sitellu Tali Urang Julu, Pakpak Bharat District,” IOP Conf. Ser. Earth Environ. Sci., vol. 260, no. 1, 2019, doi: 10.1088/1755-1315/260/1/012116.

S. Frastika, R. Batubara, and A. Rauf, “Mapping of land suitability for rambutan (Nephelium lappaceum ) in community agroforestry land at Gunung Ambat Village and Simpang Kuta Buluh Village,” vol. 25, no. 2, pp. 107–117, 2020, doi: 10.5400/jts.2019.v25i2.107-117.

Rahmawaty, S. Frastika, A. Rauf, R. Batubara, and F. S. Harahap, “Land suitability assessment for Lansium domesticum cultivation on agroforestry land using matching method and geographic information system,” Biodiversitas, vol. 21, no. 8, pp. 3683–3690, 2020, doi: 10.13057/biodiv/d210835.

S. Rinzivillo and F. Turini, “Classification in geographical information systems,” Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 3202, pp. 374–385, 2004, doi: 10.1007/978-3-540-30116-5_35.

A. Nurkholis and I. S. Sitanggang, “A spatial analysis of soybean land suitability using spatial decision tree algorithm,” in Sixth International Symposium on LAPAN-IPB Satellite, Dec. 2019, no. December, p. 113720I, doi: 10.1117/12.2541555.

A. Nurkholis and I. S. Sitanggang, “Optimization for prediction model of palm oil land suitability using spatial decision tree algorithm,” J. Teknol. dan Sist. Komput., vol. 8, no. 3, pp. 192–200, 2020, doi: 10.14710/jtsiskom.2020.13657.

H. Elaidi, Z. Benabbou, and H. Abbar, “A comparative study of algorithms constructing decision trees: Id3 and c4.5,” in LOPAL ’18: Proceedings of the International Conference on Learning and Optimization Algorithms: Theory and Applications, pp. 1–5, doi: 10.1145/3230905.3230916.

I. S. Sitanggang, R. Yaakob, N. Mustapha, and A. A. B. Nuruddin, “An extended ID3 decision tree algorithm for spatial data,” in IEEE International Conference on Spatial Data Mining and Geographical Knowledge Services, Jun. 2011, pp. 48–53, doi: 10.1109/ICSDM.2011.5969003.

I. S. Sitanggang, R. Yaakob, N. Mustapha, and A. A. B. Nuruddin, “Classification model for hotspot occurrences using spatial decision tree algorithm,” J. Comput. Sci., vol. 9, no. 2, pp. 244–251, Feb. 2013, doi: 10.3844/jcssp.2013.244.251.

Y. M. Khoiriyah and I. S. Sitanggang, “A spatial decision tree based on topological relationships for classifying hotspot occurences in Bengkalis Riau Indonesia,” in International Conference on Advanced Computer Science and Information Systems, 2014, pp. 268–272, doi: 10.1109/ICACSIS.2014.7065844.

I. S. Sitanggang, R. Yaakob, N. Mustapha, and A. A. N., “A decision tree based on spatial relationships for predicting hotspots in peatlands,” TELKOMNIKA (Telecommunication Comput. Electron. Control., vol. 12, no. 2, p. 511, Jun. 2014, doi: 10.12928/TELKOMNIKA.v12i2.2036.

A. K. Nisyak, F. Ramdani, and Suprapto, “Web-GIS development and analysis of land suitability for rice plant using GIS-MCDA method in Batu city,” in International Symposium on Geoinformatics, 2017, pp. 24–33, doi: 10.1109/ISYG.2017.8280667.

BBSDLP, Atlas peta kesesuaian lahan dan arahan komoditas pertanian pertanian, Kabupaten Grobogan, Provinsi Jawa Tengah, skala 1:50.000. Bogor (ID): Badan Penelitian dan Pengembangan Pertanian, Kementerian Pertanian, 2016.

BPS Jateng, “Berita resmi statistik: luas panen dan produksi padi di Provinsi Jawa Tengah 2019,” Semarang (ID), 2020. [Online]. Available:

S. Mukherjee, A. Mukhopadhyay, A. Bhardwaj, A. Mondal, S. Kundu, and S. Hazra, “Digital elevation model generation and retrieval of terrain attributes using CARTOSAT-1 stereo data,” Int. J. Sci. Technol., vol. 2, no. 5, pp. 265–271, 2012.

S. K. Adhikary, N. Muttil, and A. G. Yilmaz, “Cokriging for enhanced spatial interpolation of rainfall in two Australian catchments,” Hydrol. Process., vol. 31, no. 12, pp. 2143–2161, 2017, doi: 10.1002/hyp.11163.

M. Xiao, G. Zhang, P. Breitkopf, P. Villon, and W. Zhang, “Extended Co-Kriging interpolation method based on multi-fidelity data,” Appl. Math. Comput., vol. 323, pp. 120–131, 2018, doi: 10.1016/j.amc.2017.10.055.

M. D. Asfaw, S. M. Kassa, E. M. Lungu, and W. Bewket, “Effects of temperature and rainfall in plant–herbivore interactions at different altitude,” Ecol. Modell., vol. 406, no. August, pp. 50–59, 2019, doi: 10.1016/j.ecolmodel.2019.05.011.

BMKG, “Data Iklim - Data Harian,” Badan Meteorologi, Klimatologi, dan Geofisika, 2020. (accessed Jul. 20, 2020).

J. Martinez-Llario, E. Coll, M. Núñez-Andrés, and C. Femenia-Ribera, “Rule-based topology system for spatial databases to validate complex geographic datasets,” Comput. Geosci., vol. 103, no. June, pp. 122–132, 2017, doi: 10.1016/j.cageo.2017.03.013.

Y. Hayashi and S. Yukita, “Rule extraction using Recursive-Rule extraction algorithm with J48graft combined with sampling selection techniques for the diagnosis of type 2 diabetes mellitus in the Pima Indian dataset,” Informatics Med. Unlocked, vol. 2, pp. 92–104, 2016, doi: 10.1016/j.imu.2016.02.001.

J. Han, M. Kamber, and J. Pei, Data Mining: concepts and techniques, third edition, 3rd ed. Waltham (US): Morgan Kaufmann-Elsevier, 2012.

A. Tharwat, “Classification assessment methods,” Appl. Comput. Informatics, 2018, doi: 10.1016/j.aci.2018.08.003.

I. Bermana, “Klasifikasi geomorfologi untuk pemetaan geologi yang telah dibakukan,” Bull. Sci. Contrib., vol. 4, no. 2, pp. 161–173, 2006, doi: 10.1371/journal.pcbi.1003340.

BMKG, “Prakiraan hujan bulanan,” Badan Meteorologi, Klimatologi, dan Geofisika, 2020. (accessed Jul. 26, 2020).

BBPadi, Teknik ubinan: pendugaan produktivitas padi menurut sistem tanam. Jakarta (ID): Balai Besar Penelitian Tanaman Padi-Kementerian Pertanian, 2017.

How to Cite
Nurkholis, A., Muhaqiqin, & Susanto, T. (2020). Algoritme Spatial Decision Tree untuk Evaluasi Kesesuaian Lahan Padi Sawah Irigasi. Jurnal RESTI (Rekayasa Sistem Dan Teknologi Informasi), 4(5), 978-987.
Artikel Rekayasa Sistem Informasi