Klasifikasi Jenis Pantun Dengan Metode Support Vector Machines (SVM)

  • Helena Nurramdhani Irmanda Universitas Pembangunan Nasional Veteran Jakarta
  • Ria Astriratma Universitas Pembangunan Nasional Veteran Jakarta
Keywords: klasifikasi, SVM, pantun, text mining, data mining

Abstract

This study aims to create a model for categorizing pantun types and analyze the accuracy of support vector machines (SVM). The first stage is collecting pantun that have been labeled with pantun category. The pantun categories consist of pantun for children, pantun for young people, and pantun for elder. After collecting data, the next stage is pre-processing. This pre-processing stage makes data ready to be processed on the extraction stage. The pre-processing stage consists of text segmentation, case folding, tokenization, stop word removal, and stemming. The feature extraction stage is intended to analyze potential information and represent terms as a vector. Separating training data and testing data is necessary to be conducted before the classification process. Then the classification process is done by using multiclass SVM. The results of the classification are evaluated to obtain accuracy and will be analyzed whether the classification model is proper to be used. The results showed that SVM classified the types of pantun with accuracy of 81,91%.

 

Downloads

Download data is not yet available.

References

D. E. Maulina, “Keanekaragaman Pantun Di Indonesia,” Semantik, vol. 1, no. 1, pp. 107–121, 2015.

F. N. Murti, W. Siswanto, and H. Suwignyo, “Model Threshold Pantun untuk Pembelajaran Memproduksi Pantun Kelas XI,” Tesis tidak diterbitkan). Pascasarjana Universitas Negeri Malang, Malang, 2015.

T. Andriani, “Pantun Dalam Kehidupan Melayu (Pendekatan historis dan antropologis),” Sos. Budaya, vol. 9, no. 2, pp. 195–211, 2012.

L. Mutawalli, M. T. A. Zaen, and W. Bagye, “Klasifikasi Teks Sosial Media Twitter Menggunakan Support Vector Machine (Studi Kasus Penusukan Wiranto),” J. Inform. dan Rekayasa Elektron., vol. 2, no. 2, pp. 43–51, 2019.

C. Darujati and A. B. Gumelar, “Pemanfaatan teknik supervised untuk klasifikasi teks bahasa indonesia,” J. Bandung Text Min., vol. 16, no. 1, pp. 1–5, 2012.

L. G. Irham, A. Adiwijaya, and U. N. Wisesty, “Klasifikasi Berita Bahasa Indonesia Menggunakan Mutual Information dan Support Vector Machine,” J. Media Inform. Budidarma, vol. 3, no. 4, pp. 284–292, 2019.

S. H. Kusumahadi, H. Junaedi, and J. Santoso, “Klasifikasi Helpdesk Menggunakan Metode Support Vector Machine,” J. Inform., vol. 4, no. 01, pp. 55–60, 2019.

O. Somantri, S. Wiyono, and D. Dairoh, “Metode K-Means untuk Optimasi Klasifikasi Tema Tugas Akhir Mahasiswa Menggunakan Support Vector Machine (SVM),” Sci. J. Informatics, vol. 3, no. 1, pp. 34–45, 2016.

E. Waridah, Kumpulan Majas, Pantun, dan Peribahasa Plus Kesusastraan Indonesia. Ruang Kata, 2014.

P. M. Prihatini, “Implementasi Ekstraksi Fitur Pada Pengolahan Dokumen Berbahasa Indonesia,” Matrix J. Manaj. Teknol. dan Inform., vol. 6, no. 3, pp. 174–178, 2017.

A. Riyani, M. Z. Naf’an, and A. Burhanuddin, “Penerapan Cosine Similarity dan Pembobotan TF-IDF untuk Mendeteksi Kemiripan Dokumen,” J. Linguist. Komputasional, vol. 2, no. 1, pp. 23–27, 2019.

A. Fikriani, I. Asror, and Y. R. Murti, “Klasifikasi Kepribadian Berdasarkan Data Twitter dengan Menggunakan Metode Support Vector Machine,” eProceedings Eng., vol. 6, no. 3, pp. 10436–10450, 2019.

M. Oujaoura, B. Minaoui, M. Fakir, R. El Ayachi, and O. Bencharef, “Recognition of isolated printed tifinagh characters,” Int. J. Comput. Appl., vol. 85, no. 1, pp. 1–13, 2014.

D. Retnowati, E. Ernawati, and K. Anggriani, “Penerapan Support Vector Machine Untuk Pendeteksian dan Klasifikasi Motif Pada Citra Batik Besurek Motif Gabungan Berdasarkan Fitur Histogram Of Oriented Gradient,” Pseudocode, vol. 5, no. 2, pp. 75–84, 2018.

A. Faricha, M. Rivai, M. A. Nanda, D. Purwanto, R. R. P. Anhar, and others, “Design of electronic nose system using gas chromatography principle and Surface Acoustic Wave sensor,” Telkomnika, vol. 16, no. 4, pp. 1457–1467, 2018.

S. Adinugroho and Y. A. Sari, Implementasi Data Mining Menggunakan Weka. Universitas Brawijaya Press, 2018.

A. N. Rohman, R. D. Handayani, and K. Kusrini, “Deteksi Emosi Media Sosial Menggunakan Term Frequency-Inverse Document Frequency,” CSRID (Computer Sci. Res. Its Dev. Journal), vol. 11, no. 3, pp. 140–148, 2020.

Published
2020-10-30
How to Cite
Irmanda, H. N., & Ria Astriratma. (2020). Klasifikasi Jenis Pantun Dengan Metode Support Vector Machines (SVM). Jurnal RESTI (Rekayasa Sistem Dan Teknologi Informasi), 4(5), 915-922. https://doi.org/10.29207/resti.v4i5.2313
Section
Artikel Rekayasa Sistem Informasi