Identification of Reptile Species Using Convolutional Neural Networks (CNN)

  • Olvy Diaz Annesa Institut Teknologi Telkom Purwokerto
  • Condro Kartiko Institut Teknologi Telkom Purwokerto
  • Agi Prasetiadi Institut Teknologi Telkom Purwokerto
Keywords: reptile, species identification, convolutional neural network, data augmentation, python

Abstract

Reptiles are one of the most common fauna in the territory of Indonesia. quite a lot of people who have an interest in knowing more about this fauna in order to increase knowledge. Based on previous research, Deep Learning is needed in particular the CNN method for computer programs to identify reptile species through images. This reseacrh aims to determine the right model in producing high accuracy in the identification of reptile species. Thousands of images are generated through data augmentation processes for manually captured images. Using the Python programming language and Dropout technique, an accuracy of 93% was obtained by this research in identifying 14 different types of reptiles.

 

Downloads

Download data is not yet available.

References

BAPPENAS, Indonesian Biodiversity Strategy and Action Plan (IBSAP) 2015-2020. 2016.

I. S. Abdurrazaq, S. Suyanto, and D. Q. Utama, “Image-Based Classification of Snake Species Using Convolutional Neural Network,” 2019 2nd Int. Semin. Res. Inf. Technol. Intell. Syst. ISRITI 2019, pp. 97–102, 2019, doi: 10.1109/ISRITI48646.2019.9034633.

S. R. Dewi, “Deep Learning Object Detection Pada Video menggunakan Tensorflow dan Convolutional Neural Network,” Univ. Islam Indones., 2018.

A. Amir, N. A. H. Zahri, N. Yaakob, and R. B. Ahmad, “Image Classification for Snake Species Using Machine Learning Techniques,” Adv. Intell. Syst. Comput., vol. 532, pp. 52–59, 2017, doi: 10.1007/978-3-319-48517-1_5.

A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet Classification with Deep Convolutional Neural Networks,” Commun. ACM, vol. 60, no. 6, pp. 84–90, 2017, doi: 10.1145/3065386.

S. Dabeer, M. M. Khan, and S. Islam, “Cancer Diagnosis in Histopathological Image: CNN Based Approach,” Informatics Med. Unlocked, vol. 16, no. May, p. 100231, 2019, doi: 10.1016/j.imu.2019.100231.

K. Seetala, W. Birdsong, and Y. B. Reedy, “Image Classification Using TensorFlow,” Adv. Intellegent Syst. Comput. 800, no. ITNG, pp. 485–488, 2019, doi: https://doi.org/10.1007/978- 3- 030- 14070- 0_67.

C. Kartiko, A. Prasetiadi, and E. Usada, “Reptile Recognition based on Convolutional Neural Network,” Int. J. Innov. Technol. Explor. Eng., vol. 9, no. 3S, pp. 112–115, 2020, doi: 10.35940/ijitee.c1026.0193s20.z

Published
2020-10-30
How to Cite
Annesa, O. D., Condro Kartiko, & Agi Prasetiadi. (2020). Identification of Reptile Species Using Convolutional Neural Networks (CNN). Jurnal RESTI (Rekayasa Sistem Dan Teknologi Informasi), 4(5), 899-906. https://doi.org/10.29207/resti.v4i5.2282
Section
Artikel Teknologi Informasi