Feature Selection using Particle Swarm Optimization Algorithm in Student Graduation Classification with Naive Bayes Method
Seleksi Fitur menggunakan Algoritma Particle Swarm Optimization pada Klasifikasi Kelulusan Mahasiswa dengan Metode Naive Bayes
Abstract
The study of the classification of student graduation at a university aims to help the university understand the academic development of students and to be able to find solutions in improving the development of student graduation in a timely manner. The Naive Bayes method is a statistical classification method used to predict a student's graduation in this study. The classification accuracy can be improved by selecting the appropriate features. Particle Swarm Optimization is an evolutionary optimization method that can be used in feature selection to produce a better level of accuracy. The testing results of the alumni data using the Naive Bayes method that optimized with the Particle Swarm Optimization algorithm in selecting appropriate features, producing an accuracy value of 86%, 6% higher than the classification without feature selection using the Naive Bayes method.
Downloads
References
Aryasanti, A. (2018). Sistem Komparasi Naive Bayes dan Decision Trees untuk Menentukan Klasifikasi Kegagalan Studi Mahasiswa. Jurnal TICOM, Vol. 6 No.3 Mei.
Romadhona, A. (2017). Prediksi Kelulusan Mahasiswa Tepat Waktu. Jurnal Teknologi Informasi Cyberku, Vol. 13 No. 1, pp 69–83.
Amelia, M. W., Lumenta, A. S. M., dan Jacobus, A. (2017). Prediksi Masa Studi Mahasiswa dengan Menggunakan Algoritma Naive Bayes. E-Journal Teknik Informatika, Vol. 11, No. 1 ISSN: 2301-8364.
Salmu, S., dan Solichin, A. (2017). Prediksi Tingkat Kelulusan Mahasiswa Tepat Waktu Menggunakan Naive Bayes : Studi Kasus UIN Syarif Hidayatullah Jakarta. Prosiding Seminar Nasional Multidisiplin Ilmu Universitas Budi Luhur, (April), pp 701–709.
Astuti, I. P. (2017). Prediksi Ketepatan Waktu Kelulusan Dengan Algoritma Data Mining C4.5. Fountain of Informatics Journal, Vol. 2 No. 2, pp 41-45.
Ridwan, M., Suyono, H., dan Sarosa, M. (2013). Penerapan Data Mining Untuk Evaluasi Kinerja Akademik Mahasiswa Menggunakan Algoritma Naive Bayes Classifier. Jurnal EECCIS Vol.7, No. 1, Juni.
B. Xue, M. Zhang, W. Browne. (2014).Novel initialisation and updating mechanismsin PSO for feature selection in classification, in: Applications of Evolutionary Computation, vol. 7835 of Lecture Notes in Computer Science, Springer, Berlin, Heidelberg, 2013, pp. 428–438.
Xue, B., Zhang, M., Browne, W. N. (2014). Particle Swarm Optimisation For Feature Selection in Classification : Novel Initialisation and Updating Mechanisms. Applied Soft Computing, Vol. 18, 261–276.
Pujianto, U., Azizah, E. N., dan Damayanti, A. S. (2017). Naive Bayes Using to Predict Students ’ Academic Performance at Faculty of Literature. International Conference Electrical, Electronics and Information Engineering (ICEEIE), Malang, pp 163–169.
Kesumawati, A., dan Utari, D. T. (2018). Predicting patterns of student graduation rates using Naive bayes classifier and support vector machine. AIP Conference Proceedings, 2021 (October). https://doi.org/10.1063/1.5062769
Abadlia, H., Smairi, N., dan Ghedira, K. (2018). A hybrid Immigrants schema for particle swarm optimization algorithm. Procedia Computer Science, 126, pp 105–115. https://doi.org/10.1016/j.procS.2018.07.214
Kaur, S., dan Goyal, M. (2014). Fast and robust Hybrid Particle Swarm Optimization Tabu Search Association Rule Mining (HPSO-ARM) algorithm for Web Data Association Rule Mining (WDARM). International Journal of Advance Research in Computer Science and Management Studies, 2(9), pp 448–451.
Primartha, R., Tama, B. A., Arliansyah, A., Miraswan, K. J. (2018). Decision tree combined with PSO-based feature selection for sentiment analysis. Journal of Physics: Conference Series, Volume 1196, International Conference on Information System, Computer Science and Engineering 26–27 November 2018, Palembang, Indonesia.
Copyright (c) 2020 Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi)
This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright in each article belongs to the author
- The author acknowledges that the RESTI Journal (System Engineering and Information Technology) is the first publisher to publish with a license Creative Commons Attribution 4.0 International License.
- Authors can enter writing separately, arrange the non-exclusive distribution of manuscripts that have been published in this journal into other versions (eg sent to the author's institutional repository, publication in a book, etc.), by acknowledging that the manuscript has been published for the first time in the RESTI (Rekayasa Sistem dan Teknologi Informasi) journal ;