Comparative Analysis of Image Quality Values on Edge Detection Methods

Analisis Perbandingan Nilai Kualitas Citra pada Metode Deteksi Tepi

  • Wicaksono Yuli Sulistyo Universitas Ahmad Dahlan
  • Imam Riadi Universitas Ahmad Dahlan
  • Anton Yudhana Universitas Ahmad Dahlan
Keywords: digital image, edge detection, operator detection

Abstract

Identification of object boundaries in a digital image is developing rapidly in line with advances in computer technology for image processing. Edge detection becomes important because humans in recognizing the object of an image will pay attention to the edges contained in the image. Edge detection of an image is done because the edge of the object in the image contains very important information, the information obtained can be either size or shape. The edge detection method used in this study is Sobel operator, Prewitt operator, Laplace operator, Laplacian of Gaussian (LoG) operator and Kirsch operator which are compared and analyzed in the five methods. The results of the comparison show that the clear margins are the Sobel, Prewitt and Kirsch operators, with PSNR calculations that produce values ​​above 30 dB. Laplace and LoG operators only have an average PSNR value below 30 dB. Other quality comparisons use the histogram value and the contrast value with the highest value results in the Laplace and LoG operators with an average histogram value of 110 and a contrast value of 24. The lowest histogram and contrast value are owned by the Sobel and Prewitt operators.

 

Downloads

Download data is not yet available.

References

A. Eleyan and M. S. Anwar, “Multiresolution Edge Detection Using Particle Swarm Optimization,” Int. J. Eng. Sci. Appl., vol. 1, no. 1, pp. 11–17, 2017.

M. R. Wankhade and N. M. Wagdarikar, “Feature Extraction of Edge Detected Images,” Int. J. Comput. Sci. Mob. Comput., vol. 6, no. 6, pp. 336–345, 2017.

Sunardi, A. Yudhana, and S. Saifullah, “Identity Analysis of Egg Based on Digital and Thermal Imaging: Image Processing and Counting Object Concept,” Int. J. Electr. Comput. Eng., vol. 7, no. 1, pp. 200–208, 2017.

D. Herawati and A. R. Kardian, “Analisis Deteksi Tepi Pada Citra Digital Berbasis JPG Dengan Operator Canny Menggunakan Matrix Laboratory,” J. Ilm. Komputasi, vol. 17, no. 3, pp. 191–208, 2018.

V. Dohare and M. P. Parsai, “A Review of Speed Performance Evaluation of Varios Edge Detection Methods of Images,” Indian J. Comput. Sci. Eng., vol. 8, no. 2, pp. 128–138, 2017.

I. M. B. Saputra, A. Romadhony, and Adiwijaya, “Analisis Kompresi Lossless JPEG dengan Penambahan komplemen terkompresi deflate,” 2012.

R. Pradeep Kumar Reddy and C. Nagaraju, “Improved Canny Edge Detection Technique Using S-membership Function,” Int. J. Eng. Adv. Technol., vol. 8, no. 6, pp. 43–49, 2019.

K. R. O. Recio and R. G. Mendoza, “Three-step Approach to Edge Detection of Texts,” Philipp. J. Sci., vol. 148, no. 1, pp. 193–211, 2019.

S. Dhivya and D. R. Shanmugavadivu, “A Big Data Based Edge Detection Method for Image Pattern Recognition - A Survey,” Int. J. Eng. Comput. Sci., vol. 7, no. 03, pp. 23755–23760, 2018.

S. Reno and R. Edyal, “Analisa Perbandingan Deteksi Tepi Citra Foto Menggunakan Algoritma Robert dan Prewitt,” Multinetics, vol. 2, no. 2, p. 11, 2016.

M. R. H. Mohd Adnan, A. Mohd Zain, H. Haron, M. Zulfaezal Che Azemin, and M. Bahari, “Consideration of Canny Edge Detection for Eye Redness Image Processing,” IOP Conf. Ser. Mater. Sci. Eng., vol. 551, no. 1, 2019.

P. Hidayatullah, Pengolahan Citra Digital. Bandung: Informatika Bandung, 2017.

P. Malathi and M. Pushpa, “Image Edge Detection Algorithms Study,” Intern. Res. J. Eng. Technol., vol. 3, no. 6, pp. 786–789, 2016.

H. A. E. El-sennary, M. E. Hussien, and A. E. A. Ali, “Edge Detection of an Image Based on Extended Difference of Gaussian,” Am. J. Comput. Sci. Technol., vol. 2, no. 3, pp. 35–47, 2019.

B. Niu, “An Improvement Image Subjective Quality Evaluation Model Based on Just Noticeable Difference,” Proceeding Twelfth Int. Conf. Intell. Inf. Hiding Multimed. Signal Process., vol. 2, pp. 101–110, 2017.

I. M. Nasrulloh, S. Sunardi, and I. Riadi, “Analisis Forensik Solid State Drive (SSD) Menggunakan Framework Rapid Response,” J. Teknol. Inf. dan Ilmu Komput., vol. 6, no. 5, p. 509, 2019.

P. Mohammadi, A. Ebrahimi-Moghadam, and S. Shirani, “Subjective and Objective Quality Assessment of Image: A Survey,” Majlesi J. Electr. Eng., vol. 9, no. 1, pp. 55–83, 2015.

J. Singh, “Image Quality Assesment-a Review,” Int. Res. J. Eng. Technol., vol. 3, no. 8, pp. 938–942, 2016.

Arifin Muchammad and P. Diah, “Kompresi Citra Menggunakan Metode Fraktal,” Universitas Muhammadiyah Surakarta, 2018.

R. Kaur and P. Choudhary, “A Review of Image Compression Techniques,” Int. J. Comput. Appl., vol. 142, no. 1, pp. 8–11, 2016.

D. C. R. Dudhagara, “An Analysis and Study of HAAR Wavelet Based Method for 2D Image Compression,” Int. J. Trend Sci. Res. Dev., vol. 1, no. 5, pp. 238–242, 2017.

A. S. Ahmed, “Comparative Study Among Sobel, Prewitt and Canny Edge Detection Operators Used in Image Processing,” J. Theor. Appl. Inf. Technol., vol. 96, no. 19, pp. 6517–6525, 2018.

M. Joshi and A. Vyas, “Comparison of Canny edge detector with Sobel and Prewitt edge detector using different image formats,” Int. J. Eng. Res. Technol., no. 1, pp. 133–137, 2020.

M. A. Ansari, D. Kurchaniya, and M. Dixit, “A Comprehensive Analysis of Image Edge Detection Techniques,” Int. J. Multimed. Ubiquitous Eng., vol. 12, no. 11, pp. 1–12, 2017.

K. Bala Krishnan, S. Prakash Ranga, and N. Guptha, “A Survey on Different Edge Detection Techniques for Image Segmentation,” Indian J. Sci. Technol., vol. 10, no. 4, 2017.

R. Mehra, “Estimation of the Image Quality under Different Distortions,” Int. J. Eng. Comput. Sci., vol. 5, no. 17291, pp. 17291–17296, 2016.

S. Rajkumar and G. Malathi, “A Comparative Analysis on Image Quality Assessment For Real Time Satellite Images,” Indian J. Sci. Technol., vol. 9, no. 34, 2016.

Published
2020-04-20
How to Cite
Wicaksono Yuli Sulistyo, Imam Riadi, & Anton Yudhana. (2020). Comparative Analysis of Image Quality Values on Edge Detection Methods. Jurnal RESTI (Rekayasa Sistem Dan Teknologi Informasi), 4(2), 345 - 351. https://doi.org/10.29207/resti.v4i2.1827
Section
Artikel Teknologi Informasi

Most read articles by the same author(s)