Implementation of the Perceptron Method for Recognizing the Patterns of Types of Intestinal Nematode Worms

Implementasi Metode Perceptron Untuk Pengenalan Pola Jenis-Jenis Cacing Nematoda Usus

  • Erni Rouza Program Studi Teknik Informatika, Fakultas Ilmu Komputer, Universitas Pasir Pengaraian
  • Jufri Universitas Pasir Pengaraian
  • Luth Fimawahib Universitas Pasir Pengaraian
Keywords: Worms, Artificial Neural Network, Intestinal Nematodes, Pattern Recognition, Perceptron

Abstract

The purpose of pattern recognition is do the process of classifying an object into one particular class based on the pattern it has, so it can be used to recognize patterns of intestinal nematode worm types. One of the methods used in pattern recognition is by utilizing the artificial neural network method, the artificial neural network is able to represent a complex Input-Output relationship. For that the algorithm used is the perceptron algorithm. Perceptron is one method of Artificial Neural Networks. In the introduction of types of intestinal nematode worms, a computer must be trained in advance using training data and test data, this study discusses how a computer can recognize a pattern of types of intestinal nematode worms using the perceptron method. Based on the results of testing trials with input in the form of worm image scan results, based on the results of the perceptron method testing is able to recognize the pattern recognition of the types of intestinal nematode worms and be able to analyze with the right results of 100% for pinworms patterns, hookworm patterns, and 40- 50% for roundworms, by comparing the output value and the target value entered first.

Downloads

Download data is not yet available.

References

] Rouza, E., 2017. Prediksi Jenis Cacing Nematoda Usus Yang Menginfeksi Siswa Dengan Menggunakan Metoda LVQ. Digital Zone: Jurnal Teknologi Informasi dan Komunikasi, 8(2), pp.170-184. doi: https://doi.org/10.31849/digitalzone.v8i2.642

] Faridan, K., Marlinae, L. and Audhah, N.A., 2013. Faktor-faktor yang berhubungan dengan kejadian kecacingan pada siswa Sekolah Dasar Negeri Cempaka 1 Kota Banjarbaru. Jurnal Epidemiologi dan Penyakit Bersumber Binatang, 4(3).

] Tangel, F., Tuda, J.S. and Pijoh, V.D., 2016. Infeksi parasit usus pada anak sekolah dasar di pesisir pantai Kecamatan Wori Kabupaten Minahasa Utara. eBiomedik, 4(1).

] Kusuma, H., 2011. Analis Perbandingan Pengenalan Tanda Tangan dengan Menggunakan Metode Perceptron dan Backpropagation. Skripsi, Jurusan Teknik Informatika, Fakultas Sains Dan Teknologi, Universitas Islam Negeri Syarif Hidayatullah, Jakarta

] Yanto, M., Sovia, R. and Mandala, E.P.W., 2018. Jaringan syaraf tiruan perceptron untuk penentuan pola sistem irigasi lahan pertanian di Kabupaten Pesisir Selatan Sumatra Barat. Sebatik, 22(2), pp.111-115

] Musthofa, M.U., Umma, Z.K. and Handayani, A.N., 2017. Analisis Jaringan Saraf Tiruan Model Perceptron Pada Pengenalan Pola Pulau di Indonesia. Jurnal Ilmiah Teknologi Informasi Asia, 11(1), pp.89-100

] Susmikanti, M., 2007. Pengenalan Pola Bahan Terkorosi Menggunakan Metoda Pembelajaran Perceptron pada Sistim Jaringan Syaraf. In Seminar Nasional Aplikasi Teknologi Informasi (SNATI), 16 Juni 2007. Yogyakarta

] Yudhistiro, K., 2017. Pemanfaatan Neural Network Perceptron pada Pengenalan Pola Karakter. SMATIKA JURNAL, 7(02), pp.21-25.

] Arifin, M., Asfani, K. and Handayani, A.N., 2018. Aplikasi Jaringan Saraf Tiruan Metode Perceptron Pada Pengenalan Pola Notasi. Simetris: Jurnal Teknik Mesin, Elektro dan Ilmu Komputer, 9(1), pp.77-86.

] Sitorus, J., 2015. Perancangan Aplikasi Pengenalan Pola Huruf Aksara Batak Toba Menerapkan Metode Direction Feature Extraction (DFE). JURIKOM (Jurnal Riset Komputer), 2(6).

] Kusumanto, R.D. and Tompunu, A.N., 2011. pengolahan citra digital untuk mendeteksi obyek menggunakan pengolahan warna model normalisasi RGB. Semantik, 1(1).

] Veronica, O., 2014. Perbandingan Metode Fuzzy dan Metode Perceptron untuk Mengecek Status Gizi pada Anak. Ultimatics: Jurnal Teknik Informatika, 6(1), pp.30-35.

] Kusumaningtyas, S. and Asmara, R.A., 2016. Identifikasi Kematangan Buah Tomat Berdasarkan Warna Menggunakan Metode Jaringan Syaraf Tiruan (JST). Jurnal Informatika Polinema, 2(2), pp.72-72

Published
2020-02-20
How to Cite
Erni Rouza, Jufri, & Luth Fimawahib. (2020). Implementation of the Perceptron Method for Recognizing the Patterns of Types of Intestinal Nematode Worms. Jurnal RESTI (Rekayasa Sistem Dan Teknologi Informasi), 4(1), 180 - 186. https://doi.org/10.29207/resti.v4i1.1662
Section
Artikel Teknologi Informasi