Image Analysis of Diabetic Retinopathy Disease Based on Artificial Neural Network Algorithms

Analisis Citra Penyakit Diabetic Retinopathy Berdasarkan Algoritme Jaringan Syaraf Tiruan

  • Tri Astuti Universitas Amikom Purwokerto
  • Gesha Agus Setiawan -
Keywords: Diabetic Retinopathy, Artificial Neural Network, Algorithm, Backpropagation, Feature Extraction


Diabetic retinopathy is a complication of diabetes in the form of damage to the retina of the eye. High levels of glucose in the blood are the cause of small capillary blood vessels to rupture and can cause blindness. The signs of this disease can only be seen using retinal fundus images. To identify diabetic retinopathy, a computerized process and analysis are needed, one of which uses artificial neural network methods to determine its performance so that it will help the doctor in analyzing the disease and diagnosing whether a patient suffering from diabetic retinopathy or not. Texture feature extraction method using Gabor filter can represent feature value information that is skewness, kurtosis, mean, entrophy, and variance to be processed at the identification stage using artificial neural network methods. The comparison results of the DIARETDB0 dataset testing with the total of 130 fundus images using the backpropagation ANN method before randomizing the data yielded an accuracy value of 82.30%, a precision value of 71.28%, a recall value of 82.30%, and an f-measure of 76.39%. Whereas after randomizing the data for 30 times, the results of accuracy value were higher than before randomizing the data, namely the accuracy value of 83.07%, the precision value of 71.39%, the recall value of 83.07% and f-measure value of 76.78%. The tests carried out included in good classification.



Download data is not yet available.


Kusrini, Emha Taufiq Luthfi. 2009. Algoritma Data Mining. Yogyakarta: ANDI.

Restiani, Dian. 2018. Kombinasi Algoritma Cart dan Ripper Untuk Mendiagnosis Penyakit Liver Berbasis Correlation Based Feature Selection. Skripsi. STMIK Amikom Purwokerto

Hermawan, Arief. 2006. Jaringan Syaraf Tiruan. Yogyakarta: Andi.

Ayu, Ratna Gitasari., Hidayat, Bambang., Suci, Aulia. 2015. Klasifikasi Penyakit Diabetes Retinopati Berdasarkan Citra Digital dengan menggunakan Metode Wavelet dan Support Vector Machine. e-Proceeding of Engineering. Volume 2 No.1.

Iqbal, M.I., Aibinu, A.M., Gubbal, N.S., Khan, A. 2006. Automatic Diagnosis of Diabetic Retinopathy using fundus Citras. Blekinge Institute of Technology.

Dillak, Rocky Yefrenes., Bintiri, Martini Ganantowe. 2012. Identifikasi Fase Penyakit Retinopati Diabetes Menggunakan Jaringan Syaraf Tiruan Multi Layer Perceptron. ISSN: 1979-2328. Seminar Nasional Informatika 2012 (semnasIF 2012).

Astuti, E. D. 2009. Pengantar Jaringan Saraf Tiruan. Wonosobo: Star Publishing

Price SA, Wilson LM. 2006. Patofisiologi. Jakarta: EGC.

Apriyani, Yanti. 2018. Penerapan Jaringan Syaraf Tiruan Backpropagation Untuk Prediksi Nilai UN Siswa SMPN 2 Cihaurbeuti. IJCIT (Indonesian Journal on Computer and Information Technology. Volume 3 Nomor 1.

Sitompul, R. 2008. Retinopati Diabetik. J Indon Med Assoc. Volume 61 Nomor 8.

Putra, Darma. 2010. Pengolahan Citra Digital. Yogyakarta: Andi Offset.

How to Cite
Tri Astuti, & Setiawan, G. A. (2020). Image Analysis of Diabetic Retinopathy Disease Based on Artificial Neural Network Algorithms. Jurnal RESTI (Rekayasa Sistem Dan Teknologi Informasi), 4(2), 201 - 209.
Artikel Rekayasa Sistem Informasi