Pneumonia Image Classification Using CNN with Max Pooling and Average Pooling

  • Annisa Fitria Nurjannah Universitas Muhammadiyah Malang
  • Andi Shafira Dyah Kurniasari University of Muhammadiyah Malang
  • Zamah Sari Universitas Muhammadiyah Malang
  • Yufis Azhar Universitas Muhammadiyah Malang
Keywords: pneumonia, image classification, Convolutional Neural Network

Abstract

Pneumonia is still a frequent cause of death in hundreds of thousands of children in most developing countries and is generally detected clinically through chest radiographs. This method is still difficult to detect the disease and requires a long time to produce a diagnosis. To simplify and shorten the detection process, we need a faster method and more precise diagnosis of pneumonia. This study aims to classify chest x-ray images using the CNN method to diagnose pneumonia. The proposed CNN model will be tested using max & average pooling. The proposed model is developed in previous studies by adding batch normalization, dropout layer, and the number of epochs used. The dataset used will be optimized with oversampling & data augmentation techniques to maximize model performance. The dataset used in this study is "Chest X-Ray Images (Pneumonia)," with 5,856 data divided into two classes, namely Normal and Pneumonia. The proposed model gets 98% results using average pooling, where the results increase by 9-13% better than the previous study. This is because the overall pixel value of the image is highly considered to classify normal lungs and pneumonia.

 

Downloads

Download data is not yet available.

References

R. Irawan, R. Reviono, and H. Harsini, “Correlation Between Copeptin and PSI with Intravenous to Oral Antibiotic Switch Theraphy and Length of Stay in Community-Acquired Pneumonia,” J. Respirologi Indones., vol. 39, no. 1, pp. 44–53, Jan. 2020, doi: 10.36497/jri.v39i1.40.

R. Villar and S. Sidhu, “Lembaga kesehatan dan anak memeringatkan satu anak meninggal akibat pneumonia setiap 39 detik,” UNICEF Indonesia, 2019. https://www.unicef.org/indonesia/id/press-releases/lembaga-kesehatan-dan-anak-memeringatkan-satu-anak-meninggal-akibat-pneumonia-setiap#:~:text=Pada tahun 2018%2C angka kematian,malaria merenggut nyawa 272.000 anak. (accessed Jun. 18, 2021).

Biro Komunikasi dan Pelayanan Masyarakat, “Pneumonia Pada Anak bisa Dicegah dan Diobati,” Kementrian Kesehatan Republik Indonesia, 2020. https://www.kemkes.go.id/article/view/20111500001/pneumonia-pada-anak-bisa-dicegah-dan-diobati.html (accessed Jan. 14, 2022).

M. Dame Cristy Pane, “Pneumonia,” Alodokter, 2020. https://www.alodokter.com/pneumonia/diagnosis (accessed Jan. 17, 2022).

P. A. H. Pratama, R. Teguh, A. S. Sahay, and V. Wilentine, “Deteksi COVID-19 Berdasarkan Hasil Rontgen Dada (Chest Xray) Menggunakan Python,” J. Inf. Technol. Comput. Sci., vol. 1, no. 1, pp. 58–67, 2021, doi: 10.47111/jointecoms.v1i1.2956.

Kemenkes RI, “Stroke Dont Be The One.” p. 10, 2018.

I. M. D. Maysanjaya, “Klasifikasi Pneumonia pada Citra X-rays Paru-paru dengan Convolutional Neural Network,” J. Nas. Tek. Elektro dan Teknol. Inf., vol. 9, no. 2, pp. 190–195, 2020, doi: 10.22146/jnteti.v9i2.66.

M. Batta, “Machine Learning Algorithms - A Review ,” Int. J. Sci. Res. (IJ, vol. 9, no. 1, pp. 381-undefined, 2020, doi: 10.21275/ART20203995.

D. Singh, V. Kumar, Vaishali, and M. Kaur, “Classification of COVID-19 patients from chest CT images using multi-objective differential evolution–based convolutional neural networks,” Eur. J. Clin. Microbiol. Infect. Dis., vol. 39, no. 7, pp. 1379–1389, 2020, doi: 10.1007/s10096-020-03901-z.

M. R. Fauzi, P. Eosina, and D. Primasari, “Deteksi Coronavirus Disease Pada X-Ray Dan CT-Scan Paru Menggunakan Convolutional Neural Network,” JUSS (Jurnal Sains dan Sist. Informasi), vol. 3, no. 2, pp. 17–27, Mar. 2021, doi: 10.22437/juss.v3i2.10888.

M. H. Romario, E. Ihsanto, and T. M. Kadarina, “Sistem Hitung dan Klasifikasi Objek dengan Metode Convolutional Neural Network,” J. Teknol. Elektro, vol. 11, no. 2, p. 108, 2020, doi: 10.22441/jte.2020.v11i2.007.

A. Peryanto, A. Yudhana, and R. Umar, “Klasifikasi Citra Menggunakan Convolutional Neural Network dan K Fold Cross Validation,” J. Appl. Informatics Comput., vol. 4, no. 1, pp. 45–51, 2020, doi: 10.30871/jaic.v4i1.2017.

J. Garstka and M. Strzelecki, “Pneumonia detection in X-ray chest images based on convolutional neural networks and data augmentation methods,” Signal Process. - Algorithms, Archit. Arrange. Appl. Conf. Proceedings, SPA, vol. 2020-Septe, pp. 18–23, 2020, doi: 10.23919/spa50552.2020.9241305.

M. R. Alwanda, R. P. K. Ramadhan, and D. Alamsyah, “Implementasi Metode Convolutional Neural Network Menggunakan Arsitektur LeNet-5 untuk Pengenalan Doodle,” J. Algoritm., vol. 1, no. 1, pp. 45–56, 2020, doi: 10.35957/algoritme.v1i1.434.

M. Momeny, A. Jahanbakhshi, K. Jafarnezhad, and Y. D. Zhang, “Accurate classification of cherry fruit using deep CNN based on hybrid pooling approach,” Postharvest Biol. Technol., vol. 166, no. April, p. 111204, 2020, doi: 10.1016/j.postharvbio.2020.111204.

E. N. Arrofiqoh and H. Harintaka, “Implementasi Metode Convolutional Neural Network Untuk Klasifikasi Tanaman Pada Citra Resolusi Tinggi,” Geomatika, vol. 24, no. 2, p. 61, 2018, doi: 10.24895/jig.2018.24-2.810.

A. H. Ahnafi, A. Arifianto, and K. N. Ramadhani, “Pneumonia Classification from X-ray Images using Residual Neural Network,” Ind. J. Comput., vol. 5, no. September, pp. 43–54, 2020, doi: 10.21108/indojc.2020.5.2.454.

P. Mooney, “Chest X-Ray Images (Pneumonia),” Kaggle, 2018. https://www.kaggle.com/datasets/paultimothymooney/chest-xray-pneumonia (accessed Mar. 26, 2021).

J. Huber, “Batch normalization in 3 levels of understanding,” Towards Data Science, 2020. https://towardsdatascience.com/batch-normalization-in-3-levels-of-understanding-14c2da90a338 (accessed Jan. 25, 2022).

Published
2022-04-29
How to Cite
Annisa Fitria Nurjannah, Andi Shafira Dyah Kurniasari, Zamah Sari, & Yufis Azhar. (2022). Pneumonia Image Classification Using CNN with Max Pooling and Average Pooling. Jurnal RESTI (Rekayasa Sistem Dan Teknologi Informasi), 6(2), 330 - 338. https://doi.org/10.29207/resti.v6i2.4001
Section
Information Technology Articles

Most read articles by the same author(s)