Logistic Regression Using Hyperparameter Optimization on COVID-19 Patients’ Vital Status

  • Vinna Rahmayanti Setyaning Nastiti Universitas Muhammadiyah Malang
  • Yufis Azhar Universitas Muhammadiyah Malang
  • Riska Septiana Putri Universitas Muhammadiyah Malang
Keywords: logistic regression, hyperparameter optimization, covid-19, patients status


This study aims to classify COVID-19 patients based on the results of their hematology tests. Hematology test results have been shown to be useful in identifying the severity and risk of COVID-19 patients. Specifically, this study focuses on classifying COVID-19 patients based on their vital status, namely Deceased and Alive. The dataset used in this study contains four variables: white blood cells (WBC), neutrophils (NEU), lymphocytes (LYM), and Neutrophil Lymphocyte Ratio (NLR). Logistic Regression algorithm was used to solve the problem, and hyperparameter optimization was implemented to obtain the best model performance. The objective of this study was to build the best parameter in classifying the patients’ vital status. The proposed model achieved an accuracy score of 78%, which is the best performance among the tested models. The results of this study provide a key component for decision making in hospitals, as it provides a way to quickly and accurately identify the vital status of COVID-19 patients. This study has important implications for managing the COVID-19 pandemic and should be of interest to researchers and practitioners in the field.



Download data is not yet available.


S. Bhandari, A. Shaktawat, A. Tak, and B. Patel, “Logistic regression analysis to predict mortality risk in COVID-19 patients from routine hematologic parameters,” Ibnosina J. Med. Biomed. Sci., vol. 12, no. 02, pp. 123–129, Jun. 2020, doi: 10.4103/ijmbs.ijmbs_58_20.

F. Mohammadi et al., “Artificial neural network and logistic regression modelling to characterize COVID-19 infected patients in local areas of Iran,” Biomed. J., vol. 44, no. 3, pp. 304–316, Jun. 2021, doi: 10.1016/J.BJ.2021.02.006.

H. Rothan and S. Byrareddy, “The epidemiology and pathogenesis of coronavirus disease (COVID-19) outbreak,” J. Autoimmun., 2020.

R. Mus, M. Abbas, Y. Sunaidi, P. Studi DIII Teknologi Laboratorium Medis, and F. Teknologi Kesehatan, “Studi Literatur: Tinjauan Pemeriksaan Laboratorium pada Pasien COVID-19,” J. Kesehat. Vokasional, vol. 5, no. 4, pp. 242–252, Jan. 2021, doi: 10.22146/JKESVO.58741.

Q. Fu et al., “Relationship between changes in the course of COVID-19 and ratio of neutrophils-to-lymphocytes and related parameters in patients with severe vs. common disease,” Epidemiol. Infect., vol. 149, 2021, doi: 10.1017/S0950268821000674.

L. A. Potempa, I. M. Rajab, P. C. Hart, J. Bordon, and R. Fernandez-Botran, “Insights into the Use of C-Reactive Protein as a Diagnostic Index of Disease Severity in COVID-19 Infections,” Am. J. Trop. Med. Hyg., vol. 103, no. 2, p. 561, Aug. 2020, doi: 10.4269/AJTMH.20-0473.

A. Ma, J. Cheng, J. Yang, M. Dong, X. Liao, and Y. Kang, “Neutrophil-to-lymphocyte ratio as a predictive biomarker for moderate-severe ARDS in severe COVID-19 patients,” Crit. Care, vol. 24, no. 1, pp. 1–4, Jun. 2020, doi: 10.1186/S13054-020-03007-0/TABLES/1.

M. M. Imran, U. Ahmad, U. Usman, M. Ali, A. Shaukat, and N. Gul, “Neutrophil/lymphocyte ratio—A marker of COVID-19 pneumonia severity,” Int. J. Clin. Pract., vol. 75, no. 4, Apr. 2021, doi: 10.1111/IJCP.13698.

R. Channappanavar, J. Zhao, and S. Perlman, “T cell-mediated immune response to respiratory coronaviruses,” Immunol. Res., vol. 59, no. 1–3, pp. 118–128, May 2014, doi: 10.1007/S12026-014-8534-Z/FIGURES/1.

B. Zhu et al., “Correlation between white blood cell count at admission and mortality in COVID-19 patients: a retrospective study,” BMC Infect. Dis., vol. 21, no. 1, pp. 1–5, Dec. 2021, doi: 10.1186/S12879-021-06277-3/FIGURES/2.

F. Zhou et al., “Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study,” Lancet (London, England), vol. 395, no. 10229, p. 1054, Mar. 2020, doi: 10.1016/S0140-6736(20)30566-3.

C. Qin et al., “Dysregulation of Immune Response in Patients With Coronavirus 2019 (COVID-19) in Wuhan, China.,” Clin. Infect. Dis., vol. 71, no. 15, pp. 762–768, Aug. 2020, doi: 10.1093/CID/CIAA248.

S. Shi, M. Qin, B. Shen, Y. Cai, T. Liu, and F. Yang, “Association of cardiac injury with mortality in hospitalized patients with COVID-19 in Wuhan, China,” JAMA Cardiol., vol. 5, no. 7, pp. 802–810, 2020.

L. Kuri-Cervantes et al., “Comprehensive mapping of immune perturbations associated with severe COVID-19,” Sci. Immunol., vol. 5, no. 49, Jul. 2020, doi: 10.1126/SCIIMMUNOL.ABD7114/SUPPL_FILE/ABD7114_SM.PDF.

J. Liu et al., “Neutrophil-to-lymphocyte ratio predicts critical illness patients with 2019 coronavirus disease in the early stage,” J. Transl. Med., vol. 18, no. 1, pp. 1–12, May 2020, doi: 10.1186/S12967-020-02374-0/FIGURES/7.

J. Zhou, Y. Sun, W. Huang, and K. Ye, “Altered Blood Cell Traits Underlie a Major Genetic Locus of Severe COVID-19,” J. Gerontol. A. Biol. Sci. Med. Sci., vol. 76, no. 8, pp. E147–E154, Aug. 2021, doi: 10.1093/GERONA/GLAB035.

R. He et al., “The clinical course and its correlated immune status in COVID-19 pneumonia,” J. Clin. Virol., vol. 127, p. 104361, Jun. 2020, doi: 10.1016/J.JCV.2020.104361.

G. Lu and J. Wang, “Dynamic changes in routine blood parameters of a severe COVID-19 case,” Clin. Chim. Acta., vol. 508, p. 98, Sep. 2020, doi: 10.1016/J.CCA.2020.04.034.

M. Romadhon and F. Kurniawan, “A comparison of naive Bayes methods, logistic regression and KNN for predicting healing of Covid-19 patients in Indonesia,” 3rd East Indones. Conf. Comput. Inf. Technol., pp. 41–44, 2021, doi: 10.1109/EIConCIT50028.2021.9431845.

J. A. Behar, C. Liu, K. Kotzen, and F. W. Wibowo, “Prediction Modelling of COVID-19 Outbreak in Indonesia using a Logistic Regression Model,” J. Phys. Conf. Ser., vol. 1803, no. 1, p. 012015, Feb. 2021, doi: 10.1088/1742-6596/1803/1/012015.

S. Bhandari et al., “Logistic regression analysis to predict mortality risk in COVID-19 patients from routine hematologic parameters,” Ibnosina J. Med. Biomed. Sci., vol. 12, no. 02, pp. 123–129, Jun. 2020, doi: 10.4103/IJMBS.IJMBS_58_20.

C. Citu et al., “The Predictive Role of NLR, d-NLR, MLR, and SIRI in COVID-19 Mortality,” Diagnostics, vol. 12, no. 1, p. 122, Jan. 2022, doi: 10.3390/DIAGNOSTICS12010122.

W. Shang et al., “The value of clinical parameters in predicting the severity of COVID‐19,” J. Med. Virol., vol. 92, no. 10, p. 2188, Oct. 2020, doi: 10.1002/JMV.26031.

T. Rahman, A. Khandakar, M. Hoque, … N. I.-I., and U. 2021, “Development and Validation of an Early Scoring System for Prediction of Disease Severity in COVID-19 Using Complete Blood Count Parameters,” IEEE Access, vol. 9, 2021.

M. I. Gunawan, D. Sugiarto, and I. Mardianto, “Peningkatan Kinerja Akurasi Prediksi Penyakit Diabetes Mellitus Menggunakan Metode Grid Seacrh pada Algoritma Logistic Regression,” JEPIN (Jurnal Edukasi dan Penelit. Inform., vol. 6, no. 3, pp. 280–284, Dec. 2020, doi: 10.26418/JP.V6I3.40718.

A. Ambarwari and Q. Adrian, “Analisis Pengaruh Data Scaling Terhadap Performa Algoritme Machine Learning untuk Identifikasi Tanaman,” J. Rekayasa Sist. dan Teknol. Inf., vol. 4, no. 1, pp. 112–117, 2020.

Y. Desnelita, N. Nasution, L. Suryati, and F. Zoromi, “Dampak SMOTE terhadap Kinerja Random Forest Classifier berdasarkan Data Tidak seimbang,” MATRIK J. Manajemen, Tek. Inform. dan Rekayasa Komput., vol. 21, no. 3, pp. 677–690, Jul. 2022, doi: 10.30812/MATRIK.V21I3.1726.

N. Suryana and R. Tri Prasetio, “Penanganan Ketidakseimbangan Data pada Prediksi Customer Churn Menggunakan Kombinasi SMOTE dan Boosting,” IJCIT (Indonesian J. Comput. Inf. Technol., vol. 6, no. 1, pp. 31–37, 2020.

M. Lutz, “Learning Python,” Icarus, vol. 78, no. 1, p. 700, 2007, doi: 10.1016/0019-1035(89)90077-8.

A. Armonica, “Klasifikasi Jenis Persalinan pada Ibu Hamil dengan Metode Random Forest,” PHP Rosa - Pros. Semin. Nas., pp. 184–188, 2022.

P. Subarkah, P. Pambudi, S. Oktaviani, and N. Hidayah, “Perbandingan Metode Klasifikasi Data Mining untuk Nasabah Bank Telemarketing,” MATRIK J. Manajemen, Tek. Inform. dan Rekayasa Komput., vol. 20, no. 1, pp. 139–148, Sep. 2020, doi: 10.30812/MATRIK.V20I1.826.

A. H. Jahromi and H. Mahmoudi, “Estimates of mortality following COVID-19 Infection; comparison between Europe and the United States,” Immunopathol. Persa, vol. 7, no. 1, pp. e05–e05, Jul. 2020, doi: 10.34172/IPP.2021.05.

T. Purwa, “Perbandingan Metode Regresi Logistik dan Random Forest untuk Klasifikasi Data Imbalanced (Studi Kasus: Klasifikasi Rumah Tangga Miskin di Kabupaten,” J. Mat. Stat. dan Komputasi, vol. 16, no. 1, pp. 58–73, 2019, doi: 10.20956/jmsk.v16i1.6494.

How to Cite
Vinna Rahmayanti Setyaning Nastiti, Yufis Azhar, & Riska Septiana Putri. (2023). Logistic Regression Using Hyperparameter Optimization on COVID-19 Patients’ Vital Status. Jurnal RESTI (Rekayasa Sistem Dan Teknologi Informasi), 7(3), 681 - 687. https://doi.org/10.29207/resti.v7i3.4868
Information Technology Articles

Most read articles by the same author(s)