Detection of Covid-19 on X-Ray Image of Human Chest Using CNN and Transfer Learning
Abstract
At the end of 2019, a new disease called Coronavirus Disease (COVID-19) originated in Wuhan, China. This disease is caused by respiratory tract infections, ranging from the common cold to serious diseases such as Middle East Respiratory Syndrome (MERS) and Severe Acute Respiratory Syndrome (SARS). In Indonesia, there are tests to detect COVID-19, such as PCR and Rapid Test. This detector takes a long time and is less accurate in producing a diagnosis. This study aims to classify chest X-ray images using CNN and Transfer Learning methods to diagnose COVID-19. The proposed model has 4 scenarios: CNN Handcraft Model, Transfer Learning (VGG 16, VGG 19, and ResNet 50). This model is accompanied by data augmentation and data balancing techniques using undersampling techniques. The dataset used in this study is the “Covid-19 (COVID-19 and Normal) Radiographic Database” with 13,808 data divided into two classes, namely COVID-19 and Normal. Each model built will produce values for accuracy, precision, recall, and confusion matrix. The results of CNN Scenario 1 accuracy is 95%, in Scenario 2 VGG 16 the accuracy is 93%, Scenario 3 VGG 19 is 90% and Scenario 4 ResNet 50 is 80%.
Downloads
References
Gerald Aldian Wijaya, “Mengulas Riwayat Pandemi Dunia,” Bem.Fk.Ui.Ac.Id. 2020, [Online]. Available: http://bem.fk.ui.ac.id/mengulas-riwayat-pandemi-dunia/.
R. N. Putri, “Indonesia dalam Menghadapi Pandemi Covid-19,” J. Ilm. Univ. Batanghari Jambi, vol. 20, no. 2, p. 705, 2020, doi: 10.33087/jiubj.v20i2.1010.
S. Sukesih, U. Usman, S. Budi, and D. N. A. Sari, “Pengetahuan Dan Sikap Mahasiswa Kesehatan Tentang Pencegahan Covid-19 Di Indonesia,” J. Ilmu Keperawatan dan Kebidanan, vol. 11, no. 2, p. 258, 2020, doi: 10.26751/jikk.v11i2.835.
World Health Organization, “WHO Coronavirus Disease (COVID-19) Dashboard With Vaccination Data | WHO Coronavirus (COVID-19) Dashboard With Vaccination Data,” World Health Organization. pp. 1–5, 2021, [Online]. Available: https://covid19.who.int/%0Ahttps://covid19.who.int/%0Ahttps://covid19.who.int/region/searo/country/bd.
L. Amalia, I. Irwan, and F. Hiola, “Analisis Gejala Klinis Dan Peningkatan Kekebalan Tubuh Untuk Mencegah Penyakit Covid-19,” Jambura J. Heal. Sci. Res., vol. 2, no. 2, pp. 71–76, 2020, doi: 10.35971/jjhsr.v2i2.6134.
J. Moudy and R. A. Syakurah, “Pengetahuan terkait usaha pencegahan Coronavirus Disease (COVID-19) di Indonesia,” Higeia J. Public Heal. Res. Dev., vol. 4, no. 3, pp. 333–346, 2020, doi: doi.org/10.29100/jipi.v6i2.2102.
Z. S. Ahmed, N. M. S. Surameery, R. D. Rashid, S. Q. Salih, and H. K. Abdulla, “CNN-based Transfer Learning for Covid-19 Diagnosis,” in 2021 International Conference on Information Technology (ICIT), Jul. 2021, pp. 296–301, doi: 10.1109/ICIT52682.2021.9491126.
F. R. Makarim, “Mengenal 3 Jenis Tes Corona yang Digunakan di Indonesia,” Tes Diagnosis Virus Corona. pp. 2–3, 2020, [Online]. Available: https://www.halodoc.com/mengenal-jenis-tes-corona-yang-digunakan-di-indonesia.
D. L. Smith, J. P. Grenier, C. Batte, and B. Spieler, “A characteristic chest radiographic pattern in the setting of the covid-19 pandemic,” Radiol. Cardiothorac. Imaging, vol. 2, no. 5, 2020, doi: 10.1148/ryct.2020200280.
D. E. Litmanovich, M. Chung, R. R. Kirkbride, G. Kicska, and J. P. Kanne, “Review of Chest Radiograph Findings of COVID-19 Pneumonia and Suggested Reporting Language,” J. Thorac. Imaging, vol. 35, no. 6, pp. 354–360, 2020, doi: 10.1097/RTI.0000000000000541.
Bambang Pilu Hartato, “Penerapan Convolutional Neural Network pada Citra Rontgen Paru-Paru untuk Deteksi SARS-CoV-2,” J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 5, no. 4, pp. 747–759, 2021, doi: 10.29207/resti.v5i4.3153.
G. Cota et al., “Diagnostic performance of commercially available COVID-19 serology tests in Brazil,” Int. J. Infect. Dis., vol. 101, pp. 382–390, 2020, doi: 10.1016/j.ijid.2020.10.008.
E. Mohit, Z. Rostami, and H. Vahidi, “A comparative review of immunoassays for COVID-19 detection,” Expert Review of Clinical Immunology, vol. 17, no. 6. Taylor & Francis, pp. 573–599, 2021, doi: 10.1080/1744666X.2021.1908886.
S. A. Widiarto, W. A. Saputra, and A. R. Dewi, “Klasifikasi citra x-ray toraks dengan menggunakan contrast limited adaptive histogram equalization dan convolutional neural network (studi kasus: pneumonia),” vol. 06, pp. 348–359, 2021, doi: doi.org/10.29100/jipi.v6i2.2102.
M. Batta, “Machine Learning Algorithms - A Review ,” Int. J. Sci. Res. (IJ, vol. 9, no. 1, pp. 381-undefined, 2020, doi: 10.21275/ART20203995.
G. Carleo et al., “Machine learning and the physical sciences,” Rev. Mod. Phys., vol. 91, no. 4, p. 45002, 2019, doi: 10.1103/RevModPhys.91.045002.
J. Wei et al., “Machine learning in materials science,” InfoMat, vol. 1, no. 3, pp. 338–358, 2019, doi: 10.1002/inf2.12028.
D. Singh, V. Kumar, Vaishali, and M. Kaur, “Classification of COVID-19 patients from chest CT images using multi-objective differential evolution–based convolutional neural networks,” Eur. J. Clin. Microbiol. Infect. Dis., vol. 39, no. 7, pp. 1379–1389, 2020, doi: 10.1007/s10096-020-03901-z.
M. I. Razzak, S. Naz, and A. Zaib, “Deep learning for medical image processing: Overview, challenges and the future,” Lect. Notes Comput. Vis. Biomech., vol. 26, pp. 323–350, 2018, doi: 10.1007/978-3-319-65981-7_12.
M. H. Hesamian, W. Jia, X. He, and P. Kennedy, “Deep Learning Techniques for Medical Image Segmentation: Achievements and Challenges,” J. Digit. Imaging, vol. 32, no. 4, pp. 582–596, 2019, doi: 10.1007/s10278-019-00227-x.
N. Jmour, S. Zayen, and A. Abdelkrim, “Convolutional neural networks for image classification,” in 2018 International Conference on Advanced Systems and Electric Technologies, IC_ASET 2018, 2018, pp. 397–402, doi: 10.1109/ASET.2018.8379889.
M. R. Fauzi, P. Eosina, and D. Primasari, “Deteksi Coronavirus Disease Pada X-Ray Dan CT-Scan Paru Menggunakan Convolutional Neural Network,” JUSS (Jurnal Sains dan Sist. Informasi), vol. 3, no. 2, pp. 17–27, 2021, doi: 10.22437/juss.v3i2.10888.
A. Yanuar, “Fully-Connected Layer CNN dan Implementasinya – Universitas Gadjah Mada Menara Ilmu Machine Learning.” 2018, [Online]. Available: https://machinelearning.mipa.ugm.ac.id/2018/06/25/fully-connected-layer-cnn-dan-implementasinya/.
S. Chakraborty, S. Paul, and K. M. A. Hasan, “A Transfer Learning-Based Approach with Deep CNN for COVID-19- and Pneumonia-Affected Chest X-ray Image Classification,” SN Comput. Sci., vol. 3, no. 1, pp. 1–10, 2022, doi: 10.1007/s42979-021-00881-5.
Buyut Khoirul Umri and V. Delica, “Penerapan transfer learning pada convolutional neural networks dalam deteksi covid-19.,” Jnanaloka, pp. 9–17, 2021, doi: 10.36802/jnanaloka.2021.v2-no2-9-17.
T. Rahman, “COVID-19 Radiography Database | Kaggle,” Kaggle, vol. 4, no. March. p. 2021, 2021, [Online]. Available: https://www.kaggle.com/tawsifurrahman/covid19-radiography-database/activity%0Ahttps://www.kaggle.com/tawsifurrahman/covid19-radiography-database.
R. Rismiyati and A. Luthfiarta, “VGG16 Transfer Learning Architecture for Salak Fruit Quality Classification,” Telematika, vol. 18, no. 1, p. 37, 2021, doi: 10.31315/telematika.v18i1.4025.
LTDC Team, “What is the VGG-19 neural network_ - Quora.” [Online]. Available: https://www.quora.com/What-is-the-VGG-19-neural-network.
Q. Ji, J. Huang, W. He, and Y. Sun, “Optimized deep convolutional neural networks for identification of macular diseases from optical coherence tomography images,” Algorithms, vol. 12, no. 3, pp. 1–12, 2019, doi: 10.3390/a12030051.
K. H. Mahmud, Adiwijaya, and S. Al Faraby, “Klasifikasi Citra Multi-Kelas Menggunakan Convolutional Neural Network,” e-Proceeding Eng., vol. 6, no. 1, pp. 2127–2136, 2019.
L. Perez and J. Wang, “The Effectiveness of Data Augmentation in Image Classification using Deep Learning,” 2017, [Online]. Available: http://arxiv.org/abs/1712.04621.
Copyright (c) 2022 Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi)
This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright in each article belongs to the author
- The author acknowledges that the RESTI Journal (System Engineering and Information Technology) is the first publisher to publish with a license Creative Commons Attribution 4.0 International License.
- Authors can enter writing separately, arrange the non-exclusive distribution of manuscripts that have been published in this journal into other versions (eg sent to the author's institutional repository, publication in a book, etc.), by acknowledging that the manuscript has been published for the first time in the RESTI (Rekayasa Sistem dan Teknologi Informasi) journal ;