Covid-19 Detection Using Convolutional Neural Networks (CNN) Classification Algorithm
Abstract
Corona Virus, also known as COVID-19, is one of the new viruses in 2019. Viruses caused by an animal or human diseases are called coronaviruses. Coronavirus will direct respiration in humans. Humans who are exposed to the coronavirus will experience a respiratory infection. The research that will be made helps classify X-rays of the lungs of patients affected by the coronavirus. In this study, the classification of coronaviruses focuses on three classes, namely Covid, Normal, and Viral Pneumonia. This study uses a lung X-ray image dataset. This study has four folders, namely Scenario 1, Scenario 2, Scenario 3, and Scenario 4. This study will use the Convolutional Neural Network (CNN) method by using an architectural model including Convolutional 2D, activation layers, max-pooling layer, dropout layer, flatten, and dense layer. After building the model, the results of accuracy, precision, recall, and f1-score will be obtained in each scenario. The result of the accuracy of Scenario 1 is 97.87%. In Scenario 2, the accuracy is 94.84%, Scenario 3 is 91.66%, and Scenario 4 is 91.41%.
Downloads
References
W. Swastika, “Studi Awal Deteksi COVID-19 Menggunakan Citra CT Berbasis Deep Learning,” J. Teknol. Inf. dan Ilmu Komput., vol. 7, no. 3, p. 629, 2020, doi: 10.25126/jtiik.2020733399.
Bambang Pilu Hartato, “Penerapan Convolutional Neural Network pada Citra Rontgen Paru-Paru untuk Deteksi SARS-CoV-2,” J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 5, no. 4, pp. 747–759, 2021, doi: 10.29207/resti.v5i4.3153.
Y. Wang, F. Sibaii, K. Lee, M. J. Gill, and J. L. Hatch, “NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice. 1,” medRxiv, no. 165, pp. 1–13, 2021.
C. Huang et al., “Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China,” Lancet, vol. 395, no. 10223, pp. 497–506, 2020, doi: 10.1016/S0140-6736(20)30183-5.
P. Boldog, T. Tekeli, Z. Vizi, A. Dénes, F. A. Bartha, and G. Röst, “Risk assessment of novel coronavirus COVID-19 outbreaks outside China,” J. Clin. Med., vol. 9, no. 2, 2020, doi: 10.3390/jcm9020571.
D. Wang et al., “Clinical Characteristics of 138 Hospitalized Patients with 2019 Novel Coronavirus-Infected Pneumonia in Wuhan, China,” JAMA - J. Am. Med. Assoc., vol. 323, no. 11, pp. 1061–1069, 2020, doi: 10.1001/jama.2020.1585.
L. Ying et al., “Liu Ying,” 2020.
R. S. Putra, “Klasifikasi Penyebaran Covid-19 Menggunakan Algoritma C4.5 Kota Pagar Alam,” Jukomika, vol. 4, no. 1, pp. 23–35, 2021.
A. Abbas, M. M. Abdelsamea, and M. M. Gaber, “Classification of COVID-19 in chest X-ray images using DeTraC deep convolutional neural network,” Appl. Intell., vol. 51, no. 2, pp. 854–864, 2021, doi: 10.1007/s10489-020-01829-7.
Yuyun, Nurul Hidayah, and Supriadi Sahibu, “Algoritma Multinomial Naïve Bayes Untuk Klasifikasi Sentimen Pemerintah Terhadap Penanganan Covid-19 Menggunakan Data Twitter,” J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 5, no. 4, pp. 820–826, 2021, doi: 10.29207/resti.v5i4.3146.
A. Satyo et al., “Arsitektur Alexnet Convolution Neural Network ( CNN ) Untuk Mendeteksi Covid-19 Image Chest-Xray,” pp. 482–485, 2021.
Y. S. Hariyani, s. Hadiyoso, and T. S. SIADARI, “Deteksi Penyakit Covid-19 Berdasarkan Citra X-Ray Menggunakan Deep Residual Network,” ELKOMIKA J. Tek. Energi Elektr. Tek. Telekomun. Tek. Elektron., vol. 8, no. 2, p. 443, 2020, doi: 10.26760/elkomika.v8i2.443.
F. Han, J. Yao, H. Zhu, and C. Wang, “Marine Organism Detection and Classification from Underwater Vision Based on the Deep CNN Method,” Math. Probl. Eng., vol. 2020, 2020, doi: 10.1155/2020/3937580.
W. Hastomo, “Klasifikasi Covid-19 Chest X-Ray Dengan Tiga Arsitektur Cnn (Resnet-152, Inceptionresnet-V2, Mobilenet-V2),” vol. 5, no. Dl, 2021.
M. H. Saenudin Fauzan; Riza Ibnu Adam, “Classification of Covid-19 Using Feature Extraction GLCM and SVM Algorithm,” J. Mantik, vol. 5, no. Vol. 5 No. 1 (2021): May: Manajemen, Teknologi Informatika dan Komunikasi (Mantik), pp. 179–183, 2021, [Online]. Available: https://iocscience.org/ejournal/index.php/mantik/article/view/1284/907.
F. Arifin, H. Artanto, Nurhasanah, and T. S. Gunawan, “Fast COVID-19 Detection of Chest X-Ray Images Using Single Shot Detection MobileNet Convolutional Neural Networks,” J. Southwest Jiaotong Univ., vol. 56, no. 2, pp. 235–248, 2021, doi: 10.35741/issn.0258-2724.56.2.19.
T. Siswantining and R. Parlindungan, “Covid-19 classification using X-Ray imaging with ensemble learning,” J. Phys. Conf. Ser., vol. 1722, no. 1, 2021, doi: 10.1088/1742-6596/1722/1/012072.
T. Rahman, M. Chowdhury, dan A. Khandakar, “COVID-19 Radiography Database.” 2020. [Daring]. Tersedia pada:
https://www.kaggle.com/tawsifurrahman/covid19-radiography-database
L. Alzubaidi et al., Review of deep learning: concepts, CNN architectures, challenges, applications, future directions, vol. 8, no. 1. Springer International Publishing, 2021.
H. Li, J. Wang, M. Tang, and X. Li, “Polarization-dependent effects of an Airy beam due to the spin-orbit coupling,” J. Opt. Soc. Am. A Opt. Image Sci. Vis., vol. 34, no. 7, pp. 1114–1118, 2017, doi: 10.1002/ecs2.1832.
S. Kaymak, P. Esmaili, and A. Serener, “Deep Learning for Two-Step Classification of Malignant Pigmented Skin Lesions,” 2018 14th Symp. Neural Networks Appl. NEUREL 2018, no. November, pp. 1–6, 2018, doi: 10.1109/NEUREL.2018.8587019.
Copyright (c) 2022 Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi)
This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright in each article belongs to the author
- The author acknowledges that the RESTI Journal (System Engineering and Information Technology) is the first publisher to publish with a license Creative Commons Attribution 4.0 International License.
- Authors can enter writing separately, arrange the non-exclusive distribution of manuscripts that have been published in this journal into other versions (eg sent to the author's institutional repository, publication in a book, etc.), by acknowledging that the manuscript has been published for the first time in the RESTI (Rekayasa Sistem dan Teknologi Informasi) journal ;