Klasifikasi Kualitas Biji Kopi Menggunakan MultilayerPerceptron Berbasis Fitur Warna LCH

Coffee Bean Quality Classification Using MultilayerPerceptron Based on LCH Color Feature

Keywords: Coffee Backpropagation, ANN, GLCM, Color Feature

Abstract

Coffee is one of Indonesia's foreign exchange earners and plays an important role in the development of the plantation industry. In previous studies, coffee bean quality research has been carried out using the ANN method using color features. RGB and GLCM. However, the results carried out in the study only had an accuracy value of up to 47%. Therefore, this study aims to improve the performance of coffee bean quality classification using four machine learning methods and 7 color features. From the results obtained, it shows that MultilayerPerceptron is better starting with RGB color with an accuracy of 38% split ratio 90:10. HSV has an accuracy of 57% split ratio 90:10. CMYK has an accuracy of 63% split ratio 90:10. LAB has a 58% curation split ratio of 90:10. The YUV type has an accuracy of 58% split ratio 90:10. Furthermore, the HSI color type has an accuracy of 42% split ratio 90:10. The HCL color type has an accuracy of 65% split ratio 90:10 and LCH has an accuracy of 78% split ratio 90:10. In testing, it can be concluded that the MultilayerPerceptron method is better than other methods for the coffee bean classification process.

 

Downloads

Download data is not yet available.

References

I. Mawardi, H. Hanif, Z. Zaini, and Z. Abidin, “Penerapan Teknologi Tepat Guna Pascapanen Dalam Upaya Peningkatan Produktifitas Petani Kopi di Kabupaten Bener Meriah,” CARADDE J. Pengabdi. Kpd. Masy., vol. 1, no. 2, pp. 205–213, 2019, doi: 10.31960/caradde.v1i2.56.

A. Mahfud and T. Sasongko, “Pengaruh Kualitas Produk dan Harga Terhadap Loyalitas Pelanggan pada,” Sanger Warung Kopi Aceh Kota Malang. Ref. J. Ilmu Manaj. dan Akutansi, vol. 7, no. 2, pp. 130–136, 2019, doi: https://doi.org/10.33366/ref.v7i2.1590.

B. Raharjo and F. Agustini, “Metode Forward Chaining pada Sistem Pakar Penilaian Kualitas Biji Kopi Berbasis Web,” Int. J. Nat. Sci. Eng., vol. 4, no. 2, pp. 73–82, 2020, doi: http://dx.doi.org/10.23887/ijnse.v4i2.28578.

D. L. Octavyan and S. Sofiani, “Pengaruh Kualitas Produk Kopi Terhadap Keputusan Pembeli Di Point Coffee Pedurenan,” Kepariwisataan J. Ilm., vol. 15, no. 01, pp. 22–28, Jan. 2021, doi: 10.47256/kepariwisataan.v15i01.148.

W. M. Kurniawan and K. Hastuti, “Penentuan Kualitas Biji Kopi Arabika Dengan Menggunakan Analytical Hierarchy Process (Studi Kasus Pada Perkebunan Kopi Lereng Gunung Kelir Jambu Semarang),” Simetris J. Tek. Mesin, Elektro dan Ilmu Komput., vol. 8, no. 2, p. 519, Nov. 2017, doi: 10.24176/simet.v8i2.1358.

U. L. Khairat, M. Muammar, and A. Abidin, “Sistem Pendukung Keputusan Penentuan Biji Kopi Berkualitas Dengan Metode Analitycal Hierarchy Process,” J. Teknol. Inf. Mura, vol. 13, no. 1, pp. 1–13, 2021, doi: http://dx.doi.org/10.35329/jp.v2i1.1390.

A. Y. Rahman and I. Istiadi, “LoveBird Type Classification Using Fuzzy Logic and Artificial Neural Networks With Three Levels Of Features,” 2020.

A. A. Nurfalah, S. Zahra, and M. B. Tabrani, “Pengaruh Kualitas Produk Dan Harga Terhadap Kepuasan Konsumen: Studi Kasus Kedai Kopi Mustafa85 Di Pandeglang Banten,” J. Bina Bangsa Ekon., vol. 13, no. 2, pp. 313–318, 2020, doi: https://doi.org/10.46306/jbbe.v13i2.59.

I. Karyadi, I. Indahwati, and D. Julindrastuti, “Pendampingan Pada Usaha Makro Kecil Menengah (UMKM) Untuk Meningkatkan Daya Saing Melalui Peningkatan Produktivitas,” J. Pengabdi. Dharma Laksana, vol. 4, no. 1, p. 60, Sep. 2021, doi: 10.32493/j.pdl.v4i1.13183.

A. L. Hananto, S. Sulaiman, S. Widiyanto, and A. Y. Rahman, “Evaluation Comparison Of Wave Amount Measurement Results In Brass-Plated Tire Steel Cord Using RMSE And Cosine Similarity,” Indones. J. Electr. Eng. Comput. Sci., vol. 22, no. 1, p. 207, 2021, doi: 10.11591/ijeecs.v22.i1.pp207-214.

M. M. Sebatubun and M. A. Nugroho, “Ekstraksi Fitur Circularity untuk Pengenalan Varietas Kopi Arabika,” J. Teknol. Inf. dan Ilmu Komput., vol. 4, no. 4, pp. 283–289, 2017, doi: 10.25126/jtiik.201744505.

A. Y. Rahman, “Klasifikasi Citra Burung Lovebird Menggunakan Decision Tree dengan Empat Jenis Evaluasi,” vol. 1, no. 10, p. 6, 2021, doi: https://doi.org/10.29207/resti.v5i4.3210.

M. Olivia, E. Tungadi, and N. Bua’rante, “Klasifikasi Kualitas Biji Kopi Ekspor Menggunakan Jaringan Saraf Tiruan Backpropagation,” J. INSTEK (Informatika Sains dan Teknol., vol. 3, no. 2, pp. 299–308, 2018, doi: https://doi.org/10.24252/instek.v3i2.6227.

A. Y. Rahman, “Classification of Starling Image Using Artificial Neural Networks,” in 6th International Conference on Sustainable Information Engineering and Technology 2021, Sep. 2021, pp. 309–314, doi: 10.1145/3479645.3479690.

D. Ikhsan, E. Utami, and F. W. Wibowo, “Metode Klasifikasi Mutu Greenbean Kopi Arabika Lanang Dan Biasa Menggunakan K-Nearest Neighbor Berdasarkan Bentuk,” J. Ilm. SINUS, vol. 18, no. 2, p. 1, Jul. 2020, doi: 10.30646/sinus.v18i2.456.

D. A. Nugraha and A. S. Wiguna, “Seleksi Fitur Warna Citra Digital Biji Kopi Menggunakan Metode Principal Component Analysis,” Res. Comput. Inf. Syst. Technol. Manag., vol. 3, no. 1, p. 24, 2020, doi: 10.25273/research.v3i1.5352.

P. S. Maria and E. Susianti, “Performance Test Sistem Kualifikasi Biji Kopi Menggunakan Pengolahan Citra Metode Local Binary Pattern dan Algoritma Learning Vector Quantization Performance Test Sistem Kualifikasi Biji Kopi Menggunakan Pengolahan Citra Metode Local Binary Pattern dan Al,” J. Sains, Teknol. dan Ind., vol. 14, no. 2, pp. 234–239, 2017, doi: http://dx.doi.org/10.24014/sitekin.v14i2.3939.

E. R. Arboleda, A. C. Fajardo, and R. P. Medina, “Classification of coffee bean species using image processing, artificial neural network and K nearest neighbors,” in 2018 IEEE International Conference on Innovative Research and Development (ICIRD), May 2018, pp. 1–5, doi: 10.1109/ICIRD.2018.8376326.

W. R. Eustaquio, “Artificial Neural Network for Classification of Immature and Mature Coffee Beans Using RGB Values,” Int. J. Emerg. Trends Eng. Res., vol. 8, no. 8, pp. 4301–4305, Aug. 2020, doi: 10.30534/ijeter/2020/41882020.

D. W. Wibowo, D. Erwanto, and D. A. W. Kusumastutie, “Klasifikasi Jenis Kayu Menggunakan Esktrasi Fitur Gray Level Co-Occurence Matrix dan Multilayer Perceptron,” J. Nas. Tek. ELEKTRO, vol. 10, no. 1, p. 1, Mar. 2021, doi: 10.25077/jnte.v10n1.788.2021.

E. P. Wanti and M. Muhathir, “Pengidentifikasian Citra Ikan Berformalin Dengan Menggunakan Metode Multilayer Perceptron,” J-SAKTI (Jurnal Sains Komput. dan Inform., vol. 5, no. 1, pp. 491–502, 2021, doi: http://dx.doi.org/10.30645/j-sakti.v5i1.342.

T. N. Turnip, P. O. Manik, J. H. Tampubolon, and P. A. P. Siahaan, “Klasifikasi Aplikasi Android Menggunakan Algoritme K-Means Dan Convolutional Neural Network Berdasarkan Permission,” J. Teknol. Inf. dan Ilmu Komput., vol. 7, no. 2, 2020, doi: 10.25126/jtiik.202072641.

H. Annur, “Klasifikasi Masyarakat Miskin Menggunakan Metode,” vol. 10, pp. 160–165, 2018.

R. Tineges, A. Triayudi, and I. D. Sholihati, “Analisis Sentimen Terhadap Layanan Indihome Berdasarkan Twitter Dengan Metode Klasifikasi Support Vector Machine ( SVM ),” vol. 4, pp. 650–658, 2020, doi: 10.30865/mib.v4i3.2181.

R. D. Syah, “Metode Decision Tree Untuk Klasifikasi Hasil Seleksi Kompetensi Dasar Pada Cpns 2019 Di Arsip Nasional Republik Indonesia,” pp. 107–114, 2020, doi: http://dx.doi.org/10.35760/ik.2020.v25i2.2750.

Published
2021-12-29
How to Cite
Ilhamsyah, I., Rahman, A. Y., & Istiadi, I. (2021). Klasifikasi Kualitas Biji Kopi Menggunakan MultilayerPerceptron Berbasis Fitur Warna LCH . Jurnal RESTI (Rekayasa Sistem Dan Teknologi Informasi), 5(6), 1008 - 1017. https://doi.org/10.29207/resti.v5i6.3438
Section
Artikel Rekayasa Sistem Informasi