Mamdani Fuzzy Expert System for Online Learning to Diagnose Infectious Diseases

  • Istiadi Istiadi Universitas Widyagama Malang
  • Emma Budi Sulistiarini Universitas Widyagama Malang
  • Rudy Joegijantoro STIKES Widyagama Husada
  • Anik Vega Vitianingsih Universiti Teknikal Malaysia Melaka
  • Affi Nizar Suksmawati Universitas Gadjah Mada
Keywords: Expert System, Backward Chaining, Fuzzy Mamdani Min, Fuzzy Mamdani Product, Infectious Diseases

Abstract

E-learning and expert systems can be implemented for learning in the health sector. Through the e-learning system, prospective health workers can analyze problems by exploring the material in the system. However, material learning alone is less effective, so case study-based learning using an expert system is needed to strengthen understanding. The research applies an expert system to online learning to diagnose several infectious diseases. The disease diagnosis process uses the backward chaining method and the Mamdani fuzzy inference system. The fuzzy Mamdani inference system determines the intensity of disease severity so that appropriate treatment recommendations can be made.  The test findings on 15 test datasets yielded a backward chaining accuracy value of 100%. Three test scenarios were used to establish the test using the Mamdani fuzzy inference method. Scenario 1: Testing with the Center of Gravity defuzzification and Fuzzy Mamdani Min inference system Tests employing the Fuzzy Mamdani Min inference method and center average defuzzification are used in Scenario 2. Scenario 3 involves testing using the Fuzzy Mamdani Product Inference System with Center Average Defuzzification. The average outcome for the intensity of disease severity utilizing the Fuzzy Mamdani Min inference system with Center of Gravity defuzzification was greater than that of the two test scenarios that were suggested, which was 49.43%.

 

Downloads

Download data is not yet available.

References

R. Setianingrum and S. F. Rachmi, “Orientasi Perawat Baru di Rumah Sakit dengan Sistem E-Learning,” J. Telenursing, vol. 1, no. 2, pp. 416–425, 2019, doi: 10.31539/joting.v1i2.932.

A. A. S. Alim and A. Hamid, “Efektivitas Sistem E-learning Quipper School Pada Mata Pelajaran Bahasa Arab Kelas X MA Ihyaul Ulum Gresik,” AL-FIKR J. Pendidik. Islam, vol. 6, no. 1, pp. 34–39, 2020, doi: 10.32489/alfikr.v6i1.67.

N. M. Merlin and A. R. Vanchapo, “Pengaruh Pembelajaran dengan Metode e-Learning Terhadap Pemahaman Materi Kuliah Keperawatan Medikal Bedah II pada Mahasiswa Keperawatan Semester IV STIKes Maranatha Kupang,” J. Penelit. Kesehat. “SUARA FORIKES” (Journal Heal. Res. “Forikes Voice”), vol. 11, no. 3, p. 331, May 2020, doi: 10.33846/sf11322.

A. Fitriasari and Y. Septianingrum, “Pengembangan Bahan Ajar Keperawatan Dasar Berbasis E-learning,” J. Keperawatan, vol. 12, no. 3, pp. 449–458, 2020, [Online]. Available: http://repository.unusa.ac.id/id/eprint/6394%0Ahttp://repository.unusa.ac.id/6394/1/Pengembangan Bahan Ajar Keperawatan Dasar Berbasis E-learning.pdf.

I. Istiadi, Emma Budi Sulistiarini, Rudy Joegijantoro, and Dedi Usman Effendy, “Infectious Disease Expert System Using Dempster Shafers With Recommendations for Health Services,” J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 4, no. 1, pp. 17–27, Feb. 2020, doi: 10.29207/resti.v4i1.1332.

I. Istiadi, Emma Budi Sulistiarini, Rudy Joegijantoro, and Affi Nizar Suksmawati, “Comparison of CBR and Dempster-Shafer Methods on Integrated Healthcare Expert Systems,” J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 5, no. 6, pp. 1143–1152, Dec. 2021, doi: 10.29207/resti.v5i6.3612.

Istiadi, E. B. Sulistiarini, R. Joegijantoro, A. N. Suksmawati, K. S. Nugroho, and I. Akbar, “Expert System Integrated with Medical Record for Infectious Diseases using Certainty Factor,” pp. 451–456, 2022, doi: 10.1109/cyberneticscom55287.2022.9865639.

A. Herliana, V. A. Setiawan, and R. T. Prasetio, “Penerapan Inferensi Backward Chaining Pada Sistem Pakar Diagnosa Awal Penyakit Tulang,” J. Inform., vol. 5, no. 1, pp. 50–60, 2018, doi: 10.31311/ji.v5i1.2818.

M. R. Nasution, K. Nasution, and M. Z. Siambaton, “Perancangan Sistem Pakar Mendiagnosa Penyakit Covid-19 Dengan Metode Backward Chaining Berbasis Online,” Bul. Utama Tek., vol. 16, no. 3, pp. 235–239, 2021, [Online]. Available: https://jurnal.uisu.ac.id/index.php/but/article/view/3787.

S. Hardianti, A. Tenriawaru, and N. Ransi, “Sistem Pakar Diagnosa Penyakit Menular Pada Anak Menggunakan Metode Forward Chaining dan Backward Chaining,” Just TI (Jurnal Sains Terap. Teknol. Informasi), vol. 13, no. 2, p. 111, 2021, doi: 10.46964/justti.v13i2.625.

I. Risfia, D. Maharani, and M. Dewi, “Expert System Mengatasi Anxiety Disorder Pada Mahasiswa Dalam Menghadapi Tugas Akhir Metode Backward Chaining,” J. Media Inform. Biudidarma, vol. 6, no. April, pp. 1118–1125, 2022, doi: 10.30865/mib.v6i2.4001.

A. Prasetyo, R. Adipranata, and I. Sugiarto, “Implementasi Sistem Pakar Deteksi Dini Resiko Penyakit Jantung Koroner Menggunakan Metode Backward Chaining dan Certainty Factor pada Android,” J. INFRA, vol. 9, no. 2, pp. 1–6, 2021.

E. Mastrocinque, E. Lamberti, F. J. Ramirez, and D. Petrovic, “Measuring open innovation under uncertainty: A fuzzy logic approach,” J. Eng. Technol. Manag. - JET-M, vol. 63, pp. 0–14, 2022, doi: 10.1016/j.jengtecman.2022.101673.

M. Shatnawi, A. Shatnawi, Z. AlShara, and G. Husari, “Symptoms-Based Fuzzy-Logic Approach for COVID-19 Diagnosis,” Int. J. Adv. Comput. Sci. Appl., vol. 12, no. 4, pp. 444–452, 2021, doi: 10.14569/IJACSA.2021.0120457.

M. G. et al., “Fuzzy Logic-Based Systems for the Diagnosis of Chronic Kidney Disease,” Biomed Res. Int., vol. 2022, pp. 1–15, Mar. 2022, doi: 10.1155/2022/2653665.

H. Korkmaz, E. Canayaz, S. Birtane, and Z. A. Altikardes, “Fuzzy logic based risk assessment system giving individualized advice for metabolic syndrome and fatal cardiovascular diseases,” Technol. Heal. Care, vol. 27, no. S1, pp. S59–S66, 2019, doi: 10.3233/THC-199007.

Dinas Kesehatan Kota Malang, Profil Kesehatan Kota Malang. Malang, 2019.

K. Kumari and B. M. Mohan, “Minimum t-norm leads to unrealizable fuzzy PID controllers,” Inf. Sci. (Ny)., vol. 587, pp. 323–334, Mar. 2022, doi: 10.1016/j.ins.2021.12.050.

E. Pourjavad and A. Shahin, “The Application of Mamdani Fuzzy Inference System in Evaluating Green Supply Chain Management Performance,” Int. J. Fuzzy Syst., vol. 20, no. 3, pp. 901–912, Mar. 2018, doi: 10.1007/s40815-017-0378-y.

C. Papadopoulos, M. Spiliotis, F. Pliakas, I. Gkiougkis, N. Kazakis, and B. Papadopoulos, “Hybrid Fuzzy Multi-Criteria Analysis for Selecting Discrete Preferable Groundwater Recharge Sites,” Water (Switzerland), vol. 14, no. 1, pp. 1–26, 2022, doi: 10.3390/w14010107.

Hendrawan, A. Haris, E. Rasywir, and Y. Pratama, “Sistem Pakar Diagnosis Penyakit Tanaman Karet dengan Metode Fuzzy Mamdani aBerbasis Web,” J. Media Inform. Budidarma, vol. 4, no. 4, pp. 1225–1234, 2020, doi: 10.30865/mib.v4i4.2521.

F. Azzahra and N. Nurhayati, “Implementasi Fuzzy Dalam Menentukan Dampak Belajar Online Pada Masa Pandemi Covid-19,” Komik …, vol. 4, pp. 62–67, 2020, doi: 10.30865/komik.v4i1.2588.

M. A. ÇALMAZ and N. AVCU, “Fuzzy Controller for Optimization of Operation Time in Washing Machine,” Eur. J. Sci. Technol., no. 34, pp. 561–567, Mar. 2022, doi: 10.31590/ejosat.1083443.

M. V. Bobyr, A. A. Dorodnykh, and A. S. Yakushev, “Analysis of fuzzy models of implication in the task of controlling a mobile robot,” Proc. - 2018 Int. Conf. Ind. Eng. Appl. Manuf. ICIEAM 2018, pp. 1–6, 2018, doi: 10.1109/ICIEAM.2018.8728798.

Published
2022-12-29
How to Cite
Istiadi, I., Emma Budi Sulistiarini, Rudy Joegijantoro, Anik Vega Vitianingsih, & Affi Nizar Suksmawati. (2022). Mamdani Fuzzy Expert System for Online Learning to Diagnose Infectious Diseases. Jurnal RESTI (Rekayasa Sistem Dan Teknologi Informasi), 6(6), 1047 - 1056. https://doi.org/10.29207/resti.v6i6.4656
Section
Artikel Teknologi Informasi