Klasifikasi Citra Burung Lovebird Menggunakan Decision Tree dengan Empat Jenis Evaluasi

  • Aviv Yuniar Rahman Universitas Widyagama Malang
Keywords: lovebird, ANN, decision tree, precision, recall, f-measure

Abstract

Lovebird is a pet that many people in Indonesia have known. The diversity of species, coat color, and body shape gives it its charm. As well in this lovebird bird has its uniqueness of various rare colors. However, many ordinary people have difficulty distinguishing the types of lovebirds. This research is needed to improve previous study performance in classifying lovebird images using the Decision Tree J48 algorithm with 4 types of evaluation. In this case, also to reduce the stage of feature extraction to speed up the computational process. Based on available comparisons, the results obtained at the same split ratio with a comparison of 60:40 in Decision Tree J48 have the precision of 1,000, recall of 1,000, f-measure of 1,000, and accuracy value of 100%. Then the Artificial Neural Network with a split ratio of 60:40 has a precision of 0.854, recall of 0.843, f-measurement of 0.841, and an accuracy value of 84.25%. These results prove that by testing the first-level extraction on color features, Decision Tree J48 is superior in classifying images of lovebird species, and Decision Tree J48 can improve performance and produce the best accuracy.

 

Downloads

Download data is not yet available.

References

M. H. Triambudi, T. K. Sanjaya, and A. Nurlifa, “Sistem Pakar Diagnosa Penyakit Pada Burung Lovebird Menggunakan Metode Certainty Factor,” Informatika, vol. 3, no. 1, pp. 1–11, 2018, doi: 10.37438/jimpv1i2121.

A. Z. Masyhuda, N. Santoso, and E. Santoso, “Pengembangan Sistem Informasi Manajemen Ternak Burung Lovebird berbasis Android,” J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 3, no. 7, pp. 6896–6903, 2019, doi: 10.89064/2678.v8i3.896.

Y. E. Era, R. Anggie, and T. A. Darma, “Membongkar Sangkar Emas Pasar Bebas Melalui Strategi Gacoan,” Accountong Prof. Journal(Apaji), vol. 2, no. 1, pp. 1–9, 2020, doi: https://doi.org/10.35593/apaji.v2i1.6.

K. Rinartha, M. Rusli, and L. G. S. Kartika, “Pemasaran Online Burung Kicau Pada Peternak di Desa Baler Bale Agung,” Widyabhakti J. Ilm. Pop., vol. I, no. 1, pp. 81–85, 2018, doi: https://doi.org/10.23359/widyabhakti.v1i1.2.

M. Misdiyanto, Y. S. Tjahjaningsih, and I. Aprilia, “Identifikasi Jenis-Jenis Burung Lovebird Menggunakan Pengolahan Citra Digital dengan Metode K-Means Clustering,” J. Sains Komput. Inform., vol. 4, no. September, pp. 445–456, 2020, doi: http://dx.doi.org/10.30645/j-sakti.v4i2.236.

S. N. Shaputri, B. Hidayat, and U. Sunarya, “Klasifikasi Lovebird Berdasarkan Bentuk Kepala Dan Warna Dengan Metode Local Binary Pattern (LBP) Dan Fuzzy Logic Lovebird Classification Based On Head Shape And Colors Using Local Binary Pattern (LBP) Method And Fuzzy Logic,” vol. 2, no. 2, pp. 79–85, 2015, doi: https://doi.org/10.14587/1036v2i2.2.

M. E. Al Rivan and S. Devella, “Pengenalan Iris Menggunakan Fitur Local Binary Pattern Dan RBF Classifier,” Simetris J. Tek. Mesin, Elektro dan Ilmu Komput., vol. 11, no. 1, pp. 97–106, 2020, doi: 10.24176/simet.v11i1.3717.

A. S. Indrawanti and E. P. Mandyartha, “Deteksi Limfoblas Pada Citra Sel Darah Menggunakan Fitur Geometri Dan Local Binary Pattern,” J. Nas. Tek. Elektro dan Teknol. Inf., vol. 7, no. 4, pp. 404–410, 2018, doi: 10.22146/jnteti.v7i4.458.

H. Junaedi, M. Hariadi, and I. K. E. Purnama, “Profiling Gaya Sutradara Berdasarkan Penempatan Posisi Kamera Dengan Fuzzy Logic,” J. Edukasi dan Penelit. Inform., vol. 4, no. 2, p. 147, 2018, doi: 10.26418/jp.v4i2.28993.

R. Satriatama, D. Darlis, and P. Pangaribuan, “Sistem Kontrol Troli Rotari Sebagai Tempat Penitipan Barang Otomatis Menggunakan Fuzzy Logic,” ELKOMIKA J. Tek. Energi Elektr. Tek. Telekomun. Tek. Elektron., vol. 8, no. 3, p. 575, 2020, doi: 10.26760/elkomika.v8i3.575.

A. Y. Rahman and I. Istiadi, "LoveBird Type Classification Using Fuzzy Logic and Artificial Neural Networks With Three Levels Of Features," 2020.

M. Sipan and R. K. Pramuyanti, “Deteksi Kualitas Kuning Telur Ayam Kampung Menggunakan Ekstraksi Ciri Secara Statistika Orde Satu Berbasis Logika Fuzzy,” Elektrika, vol. 12, no. 2, p. 73, 2020, doi: 10.26623/elektrika.v12i2.2783.

Z. Z. R. Permana, S. T. Rasmana, and I. Puspasari, “Prediksi Jarak Bola Pada Citra Kamera Katadioptrik Menggunakan Metode Artifical Neural Network,” ELKOMIKA J. Tek. Energi Elektr. Tek. Telekomun. Tek. Elektron., vol. 9, no. 2, p. 279, 2021, doi: 10.26760/elkomika.v9i2.279.

A. T. Sari and E. Haryatmi, “Penerapan Convolutional Neural Network Deep Learning Dalam Pendeteksian Citra Biji Jagung Kering,” J. Resti (Rekayasa Sist. dan Teknol. Informasi), vol. 1, no. 10, pp. 265–271, 2021, doi: https://doi.org/10.29207/resti.v5i2.3040.

Y. W. Pamungkas, A. Adiwijaya, and D. Q. Utama, “Klasifikasi Gambar Gigitan Ular Menggunakan Regionprops dan Algoritma Decision Tree,” J. Sist. Komput. dan Inform., vol. 1, no. 2, p. 69, 2020, doi: 10.30865/json.v1i2.1789.

K. Adi, S. Pujiyanto, O. D. Nurhayati, and A. Pamungkas, "Beef Quality Identification Using Thresholding Method And Decision Tree Classification Based On Android Smartphone," J. Food Qual., vol. 2017, 2017, doi: 10.1155/2017/1674718.

A. Fouad, H. M. Moftah, and H. A. Hefny, "Brain Diagnoses Detection Using Whale Optimization Algorithm Based On Ensemble Learning Classifier," Int. J. Intell. Eng. Syst., vol. 13, no. 2, pp. 40–51, 2020, doi: 10.22266/ijies2020.0430.05.

Published
2021-08-20
How to Cite
Rahman, A. Y. (2021). Klasifikasi Citra Burung Lovebird Menggunakan Decision Tree dengan Empat Jenis Evaluasi. Jurnal RESTI (Rekayasa Sistem Dan Teknologi Informasi), 5(4), 688 - 696. https://doi.org/10.29207/resti.v5i4.3210
Section
Artikel Rekayasa Sistem Informasi