YOLO-based Small-scaled Model for On-Shelf Availability in Retail
Abstract
The availability of the shelf (OSA) in the retail industry plays a very crucial role in continuous sales. Unavailability of products can make a bad impression on customers and reduce sales. The retail industry may continue to develop through the rapidly advancing technology era to thrive in a market where competition is increasingly tough. Along with technological advances in recent decades, artificial intelligence has begun to be applied to support OSA, particularly by using object detection technology. In this research, we develop a small-scale object detection model based on four versions of the You Only Look Once (YOLO) algorithm, namely YOLOv5-nano, YOLOv6-nano, YOLOv7-tiny, and YOLOv8-nano. The developed model can be used to support automatic detection of OSA. A small-scale model has developed in the sense of postpractical implementation through low-cost mobile applications. We also use the quantization method to reduce the model size, INT8 and FP16. This small-scale model implementation also offers flexibility in implementation. With a total of 7697 milk-based retail product images and 125 different product classes, the experiment results show that the developed YOLOv8-nano model, with a mAP50 score of 0.933 and an inference time of 13.4 ms, achieved the best performance.
Downloads
References
A. S. Villarreal-Navarro, K. V. Vazquez-Preciat, L. Camacho-Alcala, and B. Villarreal, "Increasing on-shelf stock availability of a Mexican convenience store network: A case study.", In Proceedings of the International Conference on Industrial Engineering and Operations Management, pp. 10-16, Jan. 2017.
A. Trautrims, D. B. Grant, J. Fernie, and T. Harrison, "Optimizing on‐shelf availability for customer service and profit." Journal of Business Logistics, vol. 30, no. 2, pp. 231-247, Sept. 2009. https://doi.org/10.1002/j.2158-1592.2009.tb00122.x
Y. Ettouzani, N. Yates, and C. Mena, "Examining retail on shelf availability: promotional impact and a call for research." International Journal of Physical Distribution & Logistics Management, vol. 42, no. 3, pp. 213-243, Apr. 2012. doi:10.1108/09600031211225945
M. Ezhilkumar, "Enhancing behavioural intention in out-of-stock situations the mediating role of perceived product uniqueness and perceived consumption risk." Academy of Marketing Studies Journal, vol. 24, no. 2, pp. 1-15, 2020.
A. Milella, R. Marani, A. Petitti, G. Cicirelli, and T. D’Orazio. "3d vision-based shelf monitoring system for intelligent retail." In International Conference on Pattern Recognition, pp. 447-459. Cham: Springer International Publishing, 2021.
M. Crăciunescu, D. Baicu, S. Mocanu, and C. Dobre. "Determining on-shelf availability based on RGB and ToF depth cameras." In 2021 23rd International Conference on Control Systems and Computer Science (CSCS), pp. 243-248. IEEE, Jul. 2021. DOI: 10.1109/CSCS52396.2021.00047
L. Cao, "Artificial intelligence in retail: applications and value creation logics", vol. 49, no. 7, pp. 958-976, Jul. 2021. https://doi.org/10.1108/IJRDM-09-2020-0350
T. Kent, O. Omar, “Retailing in the Economy". Retailing. pp. 3-1, 2003.
M. N. Ardiansyah, P. S. Muttaqin, M. D. Prasetio, N. Novitasari, "Identifikasi Objek/Produk untuk Proses Stock Taking Barang menggunakan Konsep Object Recognition", Jurnal Rekayasa Sistem & Industri (JRSI), vol. 8, no. 1, Jun. 2021. DOI: https://doi.org/10.25124/jrsi.v8i1.455
R. Yilmazer, D. Birant, "Shelf auditing based on image classification using semi-supervised deep learning to increase on-shelf availability in grocery stores." Sensors, vol. 21, no. 2, pp. 327, Jan. 2021. https://doi.org/10.3390/s21020327
M. Saqlain, S. Rubab, M. M. Khan, N. Ali, S. Ali, "Hybrid approach for shelf monitoring and planogram compliance (hyb-smpc) in retails using deep learning and computer vision." Mathematical Problems in Engineering. pp. 1-18, Jun. 2022. https://doi.org/10.1155/2022/4916818
M. H. Lin, M. A. Sarwar, Y. A. Daraghmi, T U. İk, "On-shelf load cell calibration for positioning and weighing assisted by activity detection: Smart store scenario", IEEE Sensors Journal, vol. 22, no.4, pp.3455-3463, Jan 2022. DOI: 10.1109/JSEN.2022.3140356
Tzutalin. "LabelImg". Git code, https://github.com/tzutalin/labelImg, 2015. Accessed: Dec 12, 2023.
A. Hosna, E. Merry, J. Gyalmo, Z. Alom, Z. Aung, and M. A. Azim. "Transfer learning: a friendly introduction." Journal of Big Data, vol. 9, no. 1 pp. 102, Oct 2022. https://doi.org/10.1186/s40537-022-00652-w
M. Christopher, A. Belghith, C. Bowd, et al, "Performance of Deep Learning Architectures and Transfer Learning for Detecting Glaucomatous Optic Neuropathy in Fundus Photographs", Scientific Reports, vol 8, no.1, pp. 16685, Nov 2018. https://doi.org/10.1038/s41598-018-35044-9
G. Jocher, “YOLOv5 by Ultralytics.” https://github.com/ultralytics/yolov5, 2020. Accessed: Dec 12, 2023.
C. Li, L. Li, H. Jiang, K. Weng, Y. Geng, L. Li, Z. Ke, Q. Li, M. Cheng, W. Nie, et al., “Yolov6: A single-stage object detection framework for industrial applications,” arXiv preprint arXiv:2209.02976, 2022.
M. Contributors, “YOLOv6 by Meituan Vision AI Department” https://github.com/meituan/YOLOv6, 2023. Accessed: Dec 12, 2023.
C. Li, L. Li, Y. Geng, H. Jiang, M. Cheng, B. Zhang, Z. Ke, X. Xu, X. Chu, "YOLOv6 v3.0: A Full-Scale Reloading", https://docs.ultralytics.com/models/yolov6, arXiv preprint arXiv:2301.05586, 2023. Accessed: Dec 12, 2023.
C.-Y. Wang, A. Bochkovskiy, and H.-Y. M. Liao, “Yolov7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors,” arXiv preprint arXiv:2207.02696, 2022. https://docs.ultralytics.com/models/yolov7
W.K. Yiu, "Official YOLOv7" https://github.com/WongKinYiu/yolov7, 2023. Accessed: Dec 12, 2023.
G. Jocher, A. Chaurasia, and J. Qiu, “Ultralytics YOLOv8” https://github.com/ultralytics/ultralytics, ultralytics, 2023. Accessed: Dec 12, 2023.
T.Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár, C.L. Zitnick, "Microsoft coco: Common objects in context", In Computer Vision–ECCV 2014: 13th European Conference, Zurich, Switzerland, Proceedings, Part V 13 (pp. 740-755). Springer International Publishing, September 6-12, 2014. https://doi.org/10.1007/978-3-319-10602-1_48
P. Jiang, D. Ergu, F. Liu, Y. Cai, and B. Ma. "A Review of Yolo Algorithm Developments." Procedia Computer Science, vol. 199, pp. 1066-1073, 2022. https://doi.org/10.1016/j.procs.2022.01.135
J. R. Terven and D. M. Cordova-Esparza. "A comprehensive review of YOLO: From YOLOv1 to YOLOv8 and beyond." arXiv preprint arXiv:2304.00501, Oct 2023.
J. Redmon, S. Divvala, R. Girshick, and A. Farhadi. "You only look once: Unified, real-time object detection." In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 779-788. 2016.
Y. Bengio. "Practical recommendations for gradient-based training of deep architectures." In Neural Networks: Tricks of the Trade: Second Edition, pp. 437-478. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. DOI https://doi.org/10.1007/978-3-642-35289-8_26
G. Jocher, "Tips for Best Training Results", https://docs.ultralytics.com/yolov5/tutorials/tips_for_best_training_results, Ultralytics, Nov 2023. Accessed: Dec 12, 2023.
S. C. Magalhães, F. V. Santos, P. Machado, A. Paulo Moreira, J. Dias, "Benchmarking edge computing devices for grape bunches and trunks detection using accelerated object detection single shot multibox deep learning models", Engineering Applications of Artificial Intelligence, vol. 117, Part A, pp. 105604, Jan. 2023. https://doi.org/10.1016/j.engappai.2022.105604
D. Zhang, J. Yang, D. Ye, and G. Hua. "Lq-nets: Learned quantization for highly accurate and compact deep neural networks." In Proceedings of the European conference on computer vision (ECCV), pp. 365-382. 2018. https://arxiv.org/pdf/1807.10029.pdf
P. Chen, J. Liu, B. Zhuang, M. Tan, C. Shen, "AQD: Towards Accurate Quantized Object Detection", arXiv:2007.06919, May 2021. https://arxiv.org/pdf/2007.06919.pdf
H. Wu, P. Judd, X. Zhang, M. Isaev, and P. Micikevicius. "Integer quantization for deep learning inference: Principles and empirical evaluation." arXiv preprint arXiv:2004.09602 Apr 2020. https://doi.org/10.48550/arXiv.2004.09602
R. David, J. Duke, A. Jain, V. J. Reddi, N. Jeffries, J. Li, N. Kreeger et al. "Tensorflow lite micro: Embedded machine learning for tinyml systems." Proceedings of Machine Learning and Systems, vol. 3, pp. 800-811, 2021. https://arxiv.org/pdf/2010.08678.pdf
D. Zhou, J. Fang, X. Song, C. Guan, J. Yin, Y. Dai, and R. Yang. "Iou loss for 2d/3d object detection." In 2019 international conference on 3D vision (3DV), pp. 85-94. IEEE, Sept 2019. DOI: 10.1109/3DV.2019.00019
F. Bashir, and F. Porikli. "Performance evaluation of object detection and tracking systems." In Proceedings 9th IEEE International Workshop on PETS, pp. 7-14, Jun. 2006.
Copyright (c) 2024 Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi)
This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright in each article belongs to the author
- The author acknowledges that the RESTI Journal (System Engineering and Information Technology) is the first publisher to publish with a license Creative Commons Attribution 4.0 International License.
- Authors can enter writing separately, arrange the non-exclusive distribution of manuscripts that have been published in this journal into other versions (eg sent to the author's institutional repository, publication in a book, etc.), by acknowledging that the manuscript has been published for the first time in the RESTI (Rekayasa Sistem dan Teknologi Informasi) journal ;