Prediksi Harga Saham Menggunakan BiLSTM dengan Faktor Sentimen Publik

Stock Price Prediction using BiLSTM with Public Sentiment Factor

  • Nurdi Afrianto
  • Dhomas Hatta Fudholi Universitas Islam Indonesia
  • Septia Rani
Keywords: stock market, deep learning, bidirectional lstm, public sentiment


Stock market is one economic driver. It has roles in growth and development of a country. Stock is an attractive investment due to the huge profit. Many people buy and sell their stock. Stock investors try to choose the good investment company to get profits with small risk. Therefore, stock investors need to be careful and must evaluate a company. With machine learning technology, stock prediction problems can be solved. Deep learning is a subset of machine learning with own network. Deep learning has good performance in managing large amounts of data. This study used stock price history data and public sentiment data on a company. The method used in this research is Bidirectional Long-Short Term Memory (BiLSTM). The features used were closing price and compound score value of the public sentiment. Four scenarios were used in finding the best predictive model. The four scenarios use the same test data with different lengths of training data window. From the modelling, predictions with the model built using BiLSTM resulted in the smallest MSE value of 0.094 and the smallest RMSE value of 0.306.



Download data is not yet available.


Word Bank, “Indonesia Economic Prospects The Long Road to Recovery,” 2020. [Online]. Available:

Y. Sumarni, “Pandemi Covid 19: Tantangan Ekonomi dan Bisnis,” Al-Intaj J. Ekon. dan Perbank. Syariah, vol. 2, no. 1, pp. 46–58, 2020.

Osaze BE, The Nigeria Capital Market in the African and Global Financial System. Benin City: Bofic Consults Group Limited., 2000.

Y. S. J. Nasution, “Peranan Pasar Modal Dalam Perekonomian Negara,” Hum. FALAH J. Ekon. dan Bisnis Islam, vol. 2, no. 1, pp. 95–112, 2015.

E. Suchy and M. Soltes, “Influence of Capital Market on the US Unemployment and GDP,” Int. Sci. Conf., pp. 708–714, 2018.

C. P. Permata and M. A. Ghoni, “Peranan Pasar Modal Dalam Perekonomian Negara Indonesia,” J. Akun Stie, vol. 5, no. 2, pp. 50–61, 2019.

PT Kustodian Sentral Efek Indonesia, “Pertumbuhan Single Investor Identification (SID),” Indonesia, 2019. [Online]. Available:

D. Bhuriya, G. Kaushal, A. Sharma, and U. Singh, “Stock market predication using a linear regression,” Proc. Int. Conf. Electron. Commun. Aerosp. Technol. ICECA 2017, vol. 2017-Janua, pp. 510–513, 2017, doi: 10.1109/ICECA.2017.8212716.

M. Merfin and R. S. Oetama, “Prediksi Harga Saham Perusahaan Perbankan Menggunakan Regresi Linear Studi Kasus Bank BCA Tahun 2015-2017,” Ultim. J. Tek. Inform., vol. 11, no. 1, pp. 11–15, 2019, doi: 10.31937/ti.v11i1.1239.

A. Izzah, Y. A. Sari, R. Widyastuti, and T. A. Cinderatama, “Mobile app for stock prediction using Improved Multiple Linear Regression,” Proc. - 2017 Int. Conf. Sustain. Inf. Eng. Technol. SIET 2017, vol. 2018-Janua, pp. 150–154, 2017, doi: 10.1109/SIET.2017.8304126.

M. Hiransha, E. A. Gopalakrishnan, V. K. Menon, and K. P. Soman, “NSE Stock Market Prediction Using Deep-Learning Models,” Procedia Comput. Sci., vol. 132, no. Iccids, pp. 1351–1362, 2018, doi: 10.1016/j.procs.2018.05.050.

I. Jahan and S. Sajal, “Stock Price Prediction using Recurrent Neural Network (RNN) Algorithm on Time-Series Data,” 2018.

Zhichen Lu, Wen Long, and Ying Guo, Extreme Market Prediction for Trading Signal with Deep Recurrent Neural Network, vol. 1. Beijing, Republic of China: School of Economics and Management, University of Chinese Academy of Sciences, 2018.

R. Mathur, V. Pathak, and D. Bandil, Stock Market Price Prediction Using LSTM RNN, vol. 841. 2019.

V. Bonta, N. Kumaresh, and N. Janardhan, “A Comprehensive Study on Lexicon Based Approaches for Sentiment Analysis,” Asian J. Comput. Sci. Technol., vol. 8, no. S2, pp. 1–6, 2019, doi: 10.51983/ajcst-2019.8.s2.2037.

M. Maimaiti, A. Wumaier, K. Abiderexiti, and T. Yibulayin, “Bidirectional long short-term memory network with a conditional random field layer for Uyghur part-of-speech tagging,” Inf., vol. 8, no. 4, pp. 1–12, 2017, doi: 10.3390/info8040157.

G. Lample, M. Ballesteros, S. Subramanian, K. Kawakami, and C. Dyer, “Neural architectures for named entity recognition,” 2016 Conf. North Am. Chapter Assoc. Comput. Linguist. Hum. Lang. Technol. NAACL HLT 2016 - Proc. Conf., pp. 260–270, 2016, doi: 10.18653/v1/n16-1030.

H. R. M. , S. D. . Harish Rao M , Shashikumar D.R, “Automatic Product Review Sentiment Analysis Using Vader and Feature Visulaization,” Int. J. Comput. Sci. Eng. Inf. Technol. Res., vol. 7, no. 4, pp. 53–66, 2017, doi: 10.24247/ijcseitraug20178.

M. Karim and S. Das, “Sentiment Analysis on Textual Reviews,” IOP Conf. Ser. Mater. Sci. Eng., vol. 396, no. 1, 2018, doi: 10.1088/1757-899X/396/1/012020.

K. K. Lai, L. Yu, S. Wang, and W. Huang, “Hybridizing Exponential Smoothing and Neural Network,” Int. Conf. Comput. Sci., pp. 493–500, 2006.

A. Kumar, K. Purohit, and K. Kumar, “Stock Price Prediction Using Recurrent Neural Network and Long Short-Term Memory,” Lect. Notes Networks Syst., vol. 175, no. February, pp. 153–160, 2021, doi: 10.1007/978-3-030-67187-7_17.

R. Irmanita, Sri Suryani Prasetiyowati, and Yuliant Sibaroni, “Classification of Malaria Complication Using CART (Classification and Regression Tree) and Naïve Bayes”, RESTI, vol. 5, no. 1, pp. 10 - 16, Feb. 2021.

Dwi Kartini, Friska Abadi, and Triando Hamonangan Saragih, “Prediksi Tinggi Permukaan Air Waduk Menggunakan Artificial Neural Network Berbasis Sliding Window”, RESTI, vol. 5, no. 1, pp. 39 - 44, Feb. 2021.

Ö. Yildirim, “A novel wavelet sequences based on deep bidirectional LSTM network model for ECG signal classification,” Comput. Biol. Med., vol. 96, no. March, pp. 189–202, 2018, doi: 10.1016/j.compbiomed.2018.03.016.

How to Cite
Afrianto, N., Fudholi, D. H., & Rani, S. (2022). Prediksi Harga Saham Menggunakan BiLSTM dengan Faktor Sentimen Publik. Jurnal RESTI (Rekayasa Sistem Dan Teknologi Informasi), 6(1), 41 - 46.
Artikel Teknologi Informasi