Anatomy Identification of Bamboo Stems with The Convolutional Neural Networks (CNN) Method
Abstract
It is important to note that some species of bamboo are protected and considered endangered. However, distinguishing between traded and protected bamboo species or differentiating between bamboo species for various purposes remains a challenge. This requires specialized skills to identify the type of bamboo, and currently, the process can only be carried out in the forest for bamboo that is still in clump form by experienced researchers or officers. However, a study has been conducted to develop an easier and faster method of identifying bamboo species. The study aims to create an automatic identification system for bamboo stems based on their anatomical structure (ASINABU). The bamboo identification algorithm was developed using macroscopic images of cross-sectioned bamboo stems and the research method used was the convolutional neural network (CNN). CNN was designed to identify bamboo species with images taken using a cellphone camera equipped with a lens. The final product is an Android automatic identification application that can detect bamboo species with an accuracy of 99.9%.
Downloads
References
S. Dutta, A. Deb, P. Biswas, S. Chakraborty, S. Guha, D. Mitra, M. Das, B. Geist, A. R. Schaffner, "Identification and functional characterization of two bamboo FD gene homologs having contrasting effects on shoot growth and flowering," Scientific Reports, (11):7849, 2021, doi.org/10.1038/s41598-021-87491-6
A. Emamverdian, Y. Ding, F. Ranaei, Z. Ahmad, "Application of bamboo plants in nine aspects," The Scientific World Journal, 7284203, 2020, doi: 10.1155/2020/7284203.
A. Darwis, A. H. Iswanto, "Morphological characteristics of Bambusa vulgaris and the distribution and shape of vascular bundles there," Journal of the Korean Wood Science and Technology, 46(4):315-322, 2018, doi:10.5658/WOOD.2018.46.4.315
S. Sngh, H. Singh, S. K. Sharma, and R. Nautial, "Seasonal variation in biochemical responses of bamboo clones in the sub-tropical climate of Indian Himalayan foothills," Heliyon, 7, e06859, 2021, doi:10.1016/j.heliyon.2021.e06859
R. Nishiyama, and M. Sato," Structural rationalities of tapered hollow cylindrical beams and their use in Japanese traditional bamboo fishing rods," Scientific Reports 12:2448, 2022, doi:10.1038/s41598-022-06426-x
T. Tang, X. Liu, B. Fei, B. Zhang, X. Chen, W. Wang, "Synergistic effects of tung oil and heat treatment on physicochemical properties of bamboo materials," Scientific Reports, (9):12824, 2019, doi.org/10.1038/s41598-019-49240-8
H. Yu, S. He, W. Zhang, M. Zhan, X. Z, J. Wang, and W. Yu, "Discoloration and degradation of bunder ultraviolet radiation," Hindawi International Journal of Polymer Science, Volume 2021, Article ID 6803100, 10 pages, doi: 10.1155/2021/6803100
J. Wang, Y. Zhou, J. Li, Y. Feng, J. Zhang, H. Yu, and X. Zhuang, "Improved wettability and dimensional stability of bamboo timber by coating graphene/silica composites, " Improved wettability and dimensional stability of bamboo timber by coating graphene/silica composites," Hindawi International Journal of Polymer Science, Volume 2021, Article ID 7053143, 10 pages, doi:10.1155/2021/7053143
Q. Chen, C. Fang, G. Wang, X. Ma, J. Luo, M. Chen, C. Dai and B. Fei, " Water vapor sorption behavior of bamboo pertaining to its hierarchical structure," Scientific Reports 11:12714, 2021, doi:10.1038/s41598-021-92103-4
Z. S. Yuan, F. Liu, Z. Y. Liu, Q. L. Huang, G. F. Zhang, and H. Pan, " Structural variability and differentiation of niches in the rhizosphere and endosphere bacterial microbiome of mosobamboo (Phyllostachys edulis)," Scientific Reports, 11:1574, 2021, doi:10.1038/s41598-021-80971-9
J. Gao, L. Qu, J. Qian, Z. Wang, Y. Li, S. Yi, and Z. He, " Effects of combined acid-alkali and heat treatment on the physiochemical structure of moso bamboo," Scientific Reports 10:6760, 2020, doi:10.1038/s41598-020-63907-7
W. Li, Z. Li, and H. Kou, " Design for poverty alleviation and craft revitalization in rural China from an actor‑network perspective: the case of bamboo‑weaving in Shengzhou," Heritage Science, 10:2, 2020, doi:10.1186/s40494-021-00637-7
G. Donini, S. Greco, L. Molari, and A. Zanetti," Structural design of an Italian bamboo house in an Italian regulatory context: Revisiting a small building built in Costa Rica with tropical bamboo," Elsevier, 2214-5095, 2022. doi: 10.1016/j.cscm.2022.e00891
D. U. Shah, T. P. S. Reynolds, and M. H. Ramage, "The strength of plants: theory and experimental methods to measure the mechanical properties of stems," Journal of Experimental Botany, 68(16):4497-4516, 2017, doi: 10.1093/jxb/erx245.
Q. Lin Q, Y. Lu, S. Liu, Y. Yu, Y. Huang, W. Yu, R. Gao, and D. Li, Bamboo-inspired cell-scale assembly for energy device applications. NPJ Flexible Electronics, (6):13, 2022, doi:10.1038/s41528-022-00148-w
S. Wang, "Bamboo sheath-a modifed branch based on the anatomical observations," Scientific Reports, (7):16132, 2017, doi:10.1038/s41598-017-16470-7
A. Faruk, E. S. Cahyono, N. Eliyati, and I. Arifieni, 'Prediction and classification of low birth weight data using machine learning techni," Indonesian Journal of Science & Technology, 3 (1) (2018) 18-28, 2018, doi:10.17509/ijost.v3i1.10799
R. E. Caraka, R. C. Chen, H. Yasin, Suhartono, Y. Lee, B. Pardamean, "Hybrid vector autoregression feedforward neural network with genetic algorithm model for forecasting space-time pollution data," Indonesian Journal of Science & Technology, 6(1):243-266, 2021, doi: 10.17509/ijost.v6i1.32732
Y. LeCun, Y. Bengio, and G. Hinton, "Deep learning," Nature, (521):436–444, 2015, doi:10.1038/nature14539
O. A. Paranjay and Rajeshkumar, " A neural network aided real-time hospital recommendation system," Indonesian Journal of Science & Technology, Volume 5 Issue 2, September Hal 217-235, 2020, doi.org/10.17509/ijost.v5i2.24585
X. Zhang, "Application of artificial intelligence recognition technology in digital image processing," Hindawi Wireless Communications and Mobile Computing, 7442639(10), 2022, doi:10.1155/2022/7442639
X. Han, X. Wu, S. Wang, L. Xu, H. Xu, D. Zheng, N. Yu, Y. Hong, Z. Yu, D. Yang, and Z. Yang, "Automated segmentation of liver segment on portal venous phase MR images using a 3D convolutional neural network," Insights into Imaging, (13):26, 2022, doi:10.1186/s13244-022-01163-1
T. Majeed, R. Rashid, D. Ali, and A. Asaad, " Issues associated with deploying CNN transfer learning to detect COVID-19 from chest X-rays," National Center For Biotechnology Information, 43(4): 1289–1303, 2020, doi:10.1007/s13246-020-00934-8
D. Wang, F. Tian, S. X. Yang, Z. Zhu, D, Jiang, and B. Cai, "Improved deep cnn with parameter initialization for data analysis of near-infrared spectroscopy sensors", MPDI Sensor, 20(3), 874, 2020, doi:10.3390/s20030874
T. S. Kang, B. J. Kim, K. Y. Nam, S. Lee, K. Kim, W. S. Lee, J. Kim, and Y, S. Han, "Asymmetry between right and left fundus images identifed using convolutional neural networks," Scientific Reports, (12):1444, 2022, doi.org/10.1038/s41598-021-04323-3
T. Mahmoudi, Z. M. Kouzahkanan, A. M. Radmard, R. Kafieh, A. Salehnia, A. H. Davarpanah, H. Arabalibeik, and A. Ahmadian, "Segmentation of pancreatic ductal adenocarcinoma (PDAC) and surrounding vessels in CT images using deep convolutional neural networks and texture descriptors," Scientific Reports, 12:3092, 2022, doi:10.1038/s41598-022-07111-9
M. Bizhani, O. H. Ardakani, and E. Little, "Reconstructing high fidelity digital rock images using deep convolutional neural networks," Scientific Reports, 12:4264, 2022, doi:10.1038/s41598-022-08170-8
O. Kwon, H. G. Lee, M. R. Lee MR, S. Jang, S. Y. Yang, S. Y. Park, I. G. Choi, and H. Yeo, "Automatic wood species identification of Korean softwood based on convolutional neural networks," Journal of the Korean Wood Science and Technology, 45(6):797-808, 2017, doi: 10.5658/WOOD.2017.45.6.797
C. Firdaus, Wahyudin, and E. P. Nugroho, "Monitoring system with two central facilities protocol," Indonesian Journal of Science and Technology, 2(1): 8-25, 2017, doi:10.17509/ijost.v2i1
A. K. Srivastava, N. Safaei, S. Khahi, G. Lopez, W. Zeng, F. Ewert, T. Gaiser, and J. Rahimi, "Winter wheat yield prediction using convolutional neural networks from environmental and phenological data," Scientific Reports, (12):3215, 2022, doi:10.1038/s41598-022-06249-w
A. Haryanto, T. W. Saputra, M. Telaumbanua, A. C. Gita, "Application of artificial neural network to predict biodiesel yield from waste oil transesterification," Indonesia Journal of Science & Techonology, (5):62-74, 2020, doi:10.17509/ijost.v5i1/2309
A. Antunes, B. Ferreira, N. Marques, and N. Carrico, " Hyperparameter optimization of a convolutional neural network model for pipe burst location in water distribution networks," Journal of Imaging, 9, 68, 2023, doi:10.3390/jimaging9030068
F. M. Talaat, and S. A. Gamel, " RL based hyper‑parameters optimization algorithm (ROA) for convolutional neural network," Journal of Ambient Intelligence and Humanized Computing, 14:13349–13359, 2023, doi: doi:10.1007/s12652-022-03788-y
A. Sehgal, H. La, S. Louis, and H. Nguyen, "Deep reinforcement learning using genetic algorithm for parameter optimization, " In: 2019 Third IEEE International Conference on Robotic Computing (IRC) (pp. 596–601), IEEE, 2019, doi:10.1109/IRC.2019.00121
Y. Lu, Y. Huo, Z. Yang, Y. Niu, M. Zhao, S. Bosiakov, and L. Li, " Influence of the parameters of the convolutional neural network model in predicting the effective compressive modulus of porous structure," Frontiers in Bioengineering and Biotechnology, 10:985688, 2022, doi:10.3389/fbioe.2022.985688
S. Maitra, R. K. Ojha, and K. Ghosh, " Impact of convolutional neural network input parameters on classification performance," Institute of Electrical and Electronics Engineers, 19514810, 2020, doi:10.1109/I2CT42659.2018.9058213
Y. L. Liu, Y. K. Chen, W. X. Li, and Y. Zhang, " Model design and parameter optimization of CNN for side-channel cryptanalysis," PeerJ Computer Science, 8:e829, 2022, doi: 10.7717/peerj-cs.829
M. Harahap, E. M. Laia, L. S. Sitanggang, M. Sinaga, and D. F. Sihombing, " Deteksi penyakit covid-19 pada citra x-ray dengan pendekatan convolutional neural network (CNN)," Rekayasa Sistem dan Teknologi Informas, Vol. 6 No. 1,70-77, 2022, doi:10.29207/resti.v6i1.3373
I. Ahmad, M. Hamid, S. Yousaf, S. T. Shah, and M. O. Ahmad, "Optimizing pretrained convolutional neural networks for tomato leaf disease detection," Hindawi Complexity, Article ID 8812019, 2020, doi:10.1155/2020/8812019
G. Wang, H. Yu, and Y. Sui, " Research on maize disease recognition method based on improved resnet50," Hindawi Mobile Information Systems, Article ID 9110866, 6 pages, 2021, doi:10.1155/2021/9110866
B. Walters, S. O. Martorell, I. Olier, and P. G. J. Lisboa, "How to open a black box classifier for tabular data," MPDI: Algorithms, 16, 181, 2023, doi:10.3390/a16040181
Copyright (c) 2024 Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi)
This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright in each article belongs to the author
- The author acknowledges that the RESTI Journal (System Engineering and Information Technology) is the first publisher to publish with a license Creative Commons Attribution 4.0 International License.
- Authors can enter writing separately, arrange the non-exclusive distribution of manuscripts that have been published in this journal into other versions (eg sent to the author's institutional repository, publication in a book, etc.), by acknowledging that the manuscript has been published for the first time in the RESTI (Rekayasa Sistem dan Teknologi Informasi) journal ;