Predicting the Planting Time of Bird's Eye Chili Based on Environmental Conditions Using Internet of Things (IoT) and Neural Network Method

  • Yan Mitha Djaksana Universitas Pamulang
  • Agus Buono IPB University
  • Sri Wahjuni IPB University
  • Heru Sukoco IPB University
Keywords: Red Tabasco pepper, neural network, planting time, prediction

Abstract

In Indonesian cuisine, the red Tabasco pepper holds a significant place as a commonly used ingredient. However, the cultivation of this chili variety is not without its challenges, primarily due to the volatile nature of the chili prices. Farmers often struggle with the critical decision of when to plant Tabasco peppers to optimize their yields and income. Understanding the complexities of this decision-making process in the context of varying environmental conditions is crucial. Thanks to recent advances in Internet of Things (IoT) technology, innovative systems have emerged to address these challenges.This study focuses on the development of an IoT-based solution aimed at helping farmers in precisely determining the optimal planting time for Tabasco pepper. It uses five key criteria—average temperature (°C), average humidity (%), rainfall (mm), length of sunlight (hours) and groundwater usage data (m3) to make data-driven planting decisions. The urgent need for such a system becomes evident when considering the unpredictability of climate patterns and their direct impact on crop outcomes. Using historical data from 2019, obtained from the Jakarta Provincial Government Open Data DKI, and climate data from the Meteorological Agency, Climatology, and Geophysics (BMKG), the authors have successfully developed an IoT-based prototype. This prototype employs a neural network algorithm to analyze the aforementioned criteria. The result is a reliable prediction system that boasts an impressive accuracy rate of 91.26%. By offering this level of precision in determining the ideal planting time for Tabasco pepper, the system extends invaluable support to farmers, helping them optimize their cultivation practices and navigate the uncertainties of the chili market.

Downloads

Download data is not yet available.

References

A. Polthanee, “Cassava as an insurance crop in a changing climate: The changing role and potential applications of cassava for smallholder farmers in northeastern Thailand,” Forest and Society, vol. 2, no. 2, pp. 121–137, Nov. 2018, doi: 10.24259/fs.v2i2.4275.

D. Rosdiana and A. H. Rismayana, “Prediksi Waktu Tanam Cabai Menggunakan Algoritma C4.5,” Sintak, pp. 436–442, 2018.

D. Rienzani Supriadi, A. D. Susila, and E. Sulistyono, “Penetapan Kebutuhan Air Tanaman Cabai Merah (Capsicum annuum L.) dan Cabai Rawit (Capsicum frutescens L.),” Jurnal Hortikultura Indonesia, vol. 9, no. 1, pp. 38–46, 2018, doi: 10.29244/jhi.9.1.38-46.

Hilal Imtiyaz, Barlian Henryranu Prasetio, and Nurul Hidayat, “Sistem Pendukung Keputusan Budidaya Tanaman Cabai Berdasarkan Prediksi Curah Hujan,” Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer, vol. 1, no. 9, pp. 733–738, 2017, Accessed: Oct. 02, 2023. [Online]. Available: http://j-ptiik.ub.ac.id

Muh Hasyir Fauzi, “Respon Pertumbuhan Tanaman Cabai Rawit (Capsicum Frutescens L.) Terhadap Pemberian Air Siklus Jenuh-Kapasitas Lapang.,” Universitas Hasanuddin, Makassar, 2021.

Putu Perdana Kusuma Wiguna, Metode Perhitungan Kebutuhan Air Irigasi. Denpasar: Program Studi Agroekoteknologi, Fakultas Pertanian Universitas Udayana, 2019.

T. Walyadi, “Implementasi Algoritma C4.5 Untuk Menentukan Musim Tanam Cabai Merah Di Daerah Magelang”,” UNIVERSITAS MUHAMMADIYAH MAGELANG, MAGELANG, 2019.

A. Pramuntadi, “Model Prediksi Rentet Waktu Neural Network Berbasis Particle Swarm Optimization Untuk Prediksi Harga Saham,” Telematika, vol. 14, no. 2, pp. 100–106, 2017, doi: 10.31315/telematika.v14i2.2097.

A. Herdhyanti, L. Muflikhah, and I. Cholissodin, “Prediksi Curah Hujan dengan Empat Parameter menggunakan Backpropagation (Studi Kasus: Stasiun Meteorologi Ahmad Yani),” 2022. [Online]. Available: http://j-ptiik.ub.ac.id

J. W. G. Putra, Pengenalan Konsep Pembelajaran Mesin dan Deep Learning, 4.1. 2020.

R. Al-Madhrahi et al., “An Efficient IoT-based Smart Water Meter System of Smart City Environment,” International Journal of Advanced Computer Science and Applications, vol. 12, no. 8, pp. 420–428, 2021, doi: 10.14569/IJACSA.2021.0120848.

R. Teguh and H. Usup, “Realtime Monitoring for Groundwater Level and Local Climate Based on Universal Communication System,” Computer Science and Information Technologies, vol. 1, no. 2, 2020, doi: 10.11591/csit.v2i2.p%25p.

Y. M. Djaksana, H. Sukoco, S. Wahjuni, H. Rahmawan, and S. N. Neyman, “Smart Water Management Framework Berbasis IoT Untuk Mendukung Pertanian Urban,” PETIR, vol. 14, no. 1, pp. 1–7, Oct. 2020, doi: 10.33322/petir.v14i1.1112.

M. Hadipour, J. F. Derakhshandeh, and M. A. Shiran, “An experimental setup of multi-intelligent control system (MICS) of water management using the Internet of Things (IoT),” ISA Trans, vol. 96, no. xxxx, pp. 309–326, 2020, doi: 10.1016/j.isatra.2019.06.026.

D. B. Fogel, D. Liu, and J. M. Keller, Fundamentals of Computational Intelligence. 2016. doi: 10.1002/9781119214403.

J. W. G. Putra, Arsitektur Neural Network, 1.4. 2020.

I. N. da Silva, D. H. Spatti, R. A. Flauzino, L. H. B. Liboni, and S. F. dos Reis Alves, “Artificial neural networks: A practical course,” Artificial Neural Networks: A Practical Course, pp. 1–307, 2016, doi: 10.1007/978-3-319-43162-8.

A. A. Rizal and S. Soraya, “Multi Time Steps Prediction Dengan Recurrent Neural,” vol. 18, no. 1, pp. 115–124, 2018.

D. Berrar, “Cross-validation,” in Encyclopedia of Bioinformatics and Computational Biology: ABC of Bioinformatics, vol. 1–3, Elsevier, 2018, pp. 542–545. doi: 10.1016/B978-0-12-809633-8.20349-X.

M. E. Purbaya, D. P. Rakhmadani, Maliana Puspa Arum, and Luthfi Zian Nasifah, “Implementation of n-gram Methodology to Analyze Sentiment Reviews for Indonesian Chips Purchases in Shopee E-Marketplace,” Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), vol. 7, no. 3, pp. 609–617, Jun. 2023, doi: 10.29207/resti.v7i3.4726.

B. Cai et al., “Bootstrapping the Cross-Validation Estimate,” Jul. 2023, [Online]. Available: http://arxiv.org/abs/2307.00260

Published
2023-12-26
How to Cite
Djaksana, Y. M., Agus Buono, Sri Wahjuni, & Heru Sukoco. (2023). Predicting the Planting Time of Bird’s Eye Chili Based on Environmental Conditions Using Internet of Things (IoT) and Neural Network Method. Jurnal RESTI (Rekayasa Sistem Dan Teknologi Informasi), 7(6), 1363 - 1370. https://doi.org/10.29207/resti.v7i6.5199
Section
Information Systems Engineering Articles