Penentuan Klaster Koridor TransJakarta dengan Metode Majority Voting pada Algoritma Data Mining

  • Arief Wibowo Universitas Budi Luhur
  • Moh Makruf Universitas Budi Luhur
  • Inge Virdyna Universitas Budi Luhur
  • Farah Chikita Venna Universitas Budi Luhur
Keywords: covid-19, transjakarta, clusterization, Davies Bouldin Index, majority voting

Abstract

The Covid-19 pandemic has made many changes in the patterns of community activity. Large-Scale Social Restrictions were implemented to reduce the number of transmission of the virus. This clearly affects the mode of transportation. The mode of transportation makes new regulations to reduce the number of passenger capacities in each fleet, for example, TransJakarta services. This study will categorize the TransJakarta corridors before and during the Covid-19 pandemic. The clustering method of K-Means and K-Medoids is used to obtain accurate calculation results. The calculations are performed using Microsoft Excel, Rapid Miner, and Python programming language. The clustering results obtained that using K-Means algorithm before Covid-19 pandemic, an optimum number of clusters is 3 clusters with DBI (Davies Bouldin Index) value is 0.184, and during Covid-19 pandemic, the optimum number of clusters is 2 clusters with DBI value is 0.188. Meanwhile, when using the K-Medoids algorithm before the Covid-19 pandemic, an optimum number of clusters is 3 clusters with the DBI value is 0.200, and during the Covid-19 pandemic, an optimum number of clusters is 4 clusters with the DBI value is 0.190. The final cluster is determined using the majority voting approach from all the tools used.

 

Downloads

Download data is not yet available.

References

Giovanni L. A. and Najid N., 2020. Pengaruh ERP Terhadap Perbaikan Pelayanan Waktu Tunggu Dan Waktu Tempuh Transjakarta Pada Ruas Jalan Sudirman-Thamrin. JMTS: Jurnal Mitra Teknik Sipil, vol.3, no. 4, p. 959.

Defiyanti S., Jajuli M., and Rohmawati N., 2017. Optimalisasi K-MEDOID dalam Pengklasteran Mahasiswa Pelamar Beasiswa dengan CUBIC CLUSTERING CRITERION. Jurnal Nasional Teknologi dan Sistem Informasi, vol.3, no. 1, pp. 211–218.

Supriyatna A., Carolina I., Janti S., and Haidir A., 2020. Clustering Koridor Transjakarta Berdasarkan Jumlah Penumpang Dengan Algoritma K-Means. Jurnal Sains Komputer & Informatika (J-SAKTI), vol.4, no. September, pp. 682–693.

Indriyani F. and Irfiani E., 2019. Clustering Data Penjualan pada Toko Perlengkapan Outdoor Menggunakan Metode K-Means. JUITA: Jurnal Informatika, vol.7, no. 2, p. 109.

Sukamto S., Id I. D., and Angraini T. R., 2018. Penentuan Daerah Rawan Titik Api di Provinsi Riau Menggunakan Clustering Algoritma K-Means. JUITA: Jurnal Informatika, vol.6, no. 2, p. 137.

Supriyatna A., Carolina I., Widiati W., and Nuraeni C., 2020. Rice Productivity Analysis by Province Using K-Means Cluster Algorithm. IOP Conference Series: Materials Science and Engineering, vol.771, no. 1.

Gunawan I., Anggraeni G., Rini E. S., and Mustofa Y., 2020. Klasterisasi provinsi di Indonesia berbasis perkembangan kasus Covid-19 menggunakan metode K-Medoids. Seminar Nasional Matematika dan Pendidikan Matematika (5thSENATIK), pp. 301–306.

Juninda T., Mustasim, and Andri E., 2019. Penerapan Algoritma K-Medoids untuk Pengelompokan Penyakit di Pekanbaru Riau. Seminar Nasional Teknologi Informasi, Komunikasi dan Industri, vol.11, no. 1, pp. 42–49.

Marlina D., Lina N., Fernando A., and Ramadhan A., 2018. Implementasi Algoritma K-Medoids dan K-Means untuk Pengelompokkan Wilayah Sebaran Cacat pada Anak. Jurnal CoreIT: Jurnal Hasil Penelitian Ilmu Komputer dan Teknologi Informasi, vol.4, no. 2, p. 64.

Pramesti D. F., Lahan, Tanzil Furqon M., and Dewi C., 2017. Implementasi Metode K-Medoids Clustering Untuk Pengelompokan Data Potensi Kebakaran Hutan/Lahan Berdasarkan Persebaran Titik Panas (Hotspot). Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer, vol.1, no. 9, pp. 723–732.

Retno Utari D. and Wibowo A., 2020. Pemodelan Prediksi Status Keberlanjutan Polis Asuransi Kendaraan dengan Teknik Pemilihan Mayoritas Menggunakan Algoritma-Algoritma Klasifikasi Data Mining. Prosiding Seminar Nasional Teknoka, vol.5, no. 2502, pp. 19–24.

Praja B. S., Kusuma P. D., and Setianingsih C., 2019. Penerapan Metode K-Means Clustering Dalam Pengelompokan Data Penumpang Dan Kapal Angkutan Laut Di Indonesia. e-Proceeding of Engineering, vol.06, no. 1, p. 1442.

Nugroho D., Nhita F., and Trantoro D., 2016. Prediksi Penyakit Menggunakan Genetic Algorithm ( GA ) dan Naive Bayes Untuk Data Berdimensi Tinggi Prediction of Disease Using Genetic Algorithm ( GA ) and Naive Bayes For Data High Dimension. e-Proceeding of Engineering, vol.3, no. 2, pp. 3889–3899.

Ningrat D. R., Maruddani D. A. I., and Wuryandari T., 2016. Analisis Cluster Dengan Algoritma K-Means Dan Fuzzy C-Means Clustering Untuk Pengelompokan Data Obligasi Korporasi. Jurnal Gaussian, vol.5, no. 4, pp. 641–650.

Bastian A., Sujadi H., and Febrianto G., 2018. Penerapan Algoritma K-Means Clustering Analysis Pada Penyakit Menular Manusia (Studi Kasus Kabupaten Majalengka). Jurnal Sistem Informasi, vol.14, no. 1, pp. 26–32.

Sindi S., Ningse W. R. O., Sihombing I. A., Ilmi R.H.Zer F., and Hartama D., 2020. Analisis Algoritma K-Medoids Clustering Dalam Pengelompokan Penyebaran Covid-19 Di Indonesia. JTI (Jurnal Teknologi Informasi), vol.4, no. 1, pp. 166–173.

Listiyanti D., Syahbana Y. A., and Henim S. R., 2016. Perancangan dan Implementasi Aplikasi Android Penentu Salient Area pada Video dengan Algoritma K-Medoids. Annual Research Seminar: Computer Science and Information and Communications Technology, vol.2, no. 1, pp. 96–101.

Mahartika I. R. and Wibowo A., 2019. Data Mining Klasterisasi dengan Algoritme K-Means untuk Pengelompokkan Provinsi Berdasarkan Konsumsi Bahan Bakar Minyak Nasional. Prosiding Seminar Nasional SISFOTEK (Sistem Informasi dan Teknologi), vol.3, no. 1, pp. 87–91.

Satmoko D. B., Sukarno P., and Jadied E. M., 2018. Peningkatan Akurasi Pendeteksian Serangan DDoS Menggunakan Multiclassifier Ensemble Learning dan Chi-Square Pendahuluan Studi Terkait, vol.5, no. 3, pp. 7977–7985.

Patil D. R. and Patil J. B., 2018. Malicious URLs detection using decision tree classifiers and majority voting technique. Cybernetics and Information Technologies, vol.18, no. 1, pp. 11–29.

Alotaibi B. and Elleithy K., 2016. A majority voting technique for Wireless Intrusion Detection Systems. 2016 IEEE Long Island Systems, Applications and Technology Conference, LISAT 2016, no. October 2017.

Published
2021-06-26
How to Cite
Wibowo, A., Moh Makruf, Inge Virdyna, & Farah Chikita Venna. (2021). Penentuan Klaster Koridor TransJakarta dengan Metode Majority Voting pada Algoritma Data Mining. Jurnal RESTI (Rekayasa Sistem Dan Teknologi Informasi), 5(3), 565 - 575. https://doi.org/10.29207/resti.v5i3.3041
Section
Artikel Rekayasa Sistem Informasi