Efficient Pattern Recognition of Sundanese Script Variants Using CNN

  • Muhammad Husni Wahid Universitas Teknologi Yogyakarta
  • Erik Iman Heri Ujianto Universitas Teknologi Yogyakarta
Keywords: CNN, Pattern Recognition, Sundanese Script, MobileNetV2

Abstract

This research aims to apply pattern recognition technology, specifically through the Convolutional Neural Network (CNN) approach, in identifying and translating Sundanese script accurately. This research is focused on recognizing rarangken script patterns based on ngalagena script in Indonesian cultural heritage. This study uses the MobileNetV2 based CNN model, utilizing transfer learning and trained for 50 epochs using the Adam optimizer with a learning rate of 0.0001, to achieve a training accuracy of 98.75% and test accuracy of 96.95% in 1 hour and 23 minutes, respectively. The results of the study show that the simpler CNN architecture without augmentation achieved the highest accuracy of 99.26%, and the augmented CNN model achieved 94.42% accuracy in 2 hours and 22 minutes. These results enable practical applications in both education and cultural preservation, demonstrating how modern technology can effectively contribute to maintaining traditional cultural elements in the digital era.

Downloads

Download data is not yet available.

References

F. Febriansyah, N. R, A. I. Purnamasari, O. Nurdiawan, and S. Anwar, “Pengenalan Teknologi Android Game Edukasi Belajar Aksara Sunda untuk Meningkatkan Pengetahuan,” JURIKOM (Jurnal Riset Komputer), vol. 8, no. 6, p. 336, Dec. 2021, doi: 10.30865/jurikom.v8i6.3676.

Rosalina, N. Afriliana, W. H. Utomo, and G. Sahuri, “Deep learning utilization in Sundanese script recognition for cultural preservation,” Indonesian Journal of Electrical Engineering and Computer Science, vol. 36, no. 3, pp. 1759–1768, Dec. 2024, doi: 10.11591/ijeecs.v36.i3.pp1759-1768.

A. Kirana and H. Hikmayanti, “Pengenalan Pola Aksara Sunda dengan Metode Convolutional Neural Network,” Scientific Student Journal for Information, Technology and Science, vol. 1, no. 2, pp. 95–100, 2020.

A. Biswas and Md. S. Islam, “An Efficient CNN Model for Automated Digital Handwritten Digit Classification,” Journal of Information Systems Engineering and Business Intelligence, vol. 7, no. 1, p. 42, Apr. 2021, doi: 10.20473/jisebi.7.1.42-55.

A. Willyanto, D. Alamsyah, and H. Irsyad, “Identifikasi Tulisan Tangan Aksara Jepang Hiragana Menggunakan Metode CNN Arsitektur VGG-16,” Jurnal Algoritme, vol. 2, no. 1, pp. 1–11, 2021.

S. N. Rahmawati, E. W. Hidayat, and H. Mubarok, “Implementasi Deep Learning Pada Pengenalan Aksara Sunda Menggunakan Metode Convolutional Neural Network,” INSERT: Information System and Emerging Technology Journal, vol. 2, no. 1, pp. 46–58, 2021.

L. S. Wulandari, E. Rosalina, A. Shomami, and P. N. Jakarta, “Adaptive Learning of Sundanese Script Based on Android Games in The Digital Era,” Jurnal Ilmiah UPT P2M STKIP Siliwangi, vol. 10, no. 1, pp. 25-37, 2023

C. Nisa and F. Candra, “Klasifikasi Jenis Rempah-Rempah Menggunakan Algoritma Convolutional Neural Network,” MALCOM: Indonesian Journal of Machine Learning and Computer Science, vol. 4, no. 1, pp. 78–84, Dec. 2023, doi: 10.57152/malcom.v4i1.1018.

A. Y. Nadhiroh, “Sistem Klasifikasi Jenis Kain Berdasarkan Tekstur Menggunakan Metode Support Vector Machine Berbasis Web Flask Fabric Type Classification System Based On Texture Using Vector Machine Support Method Based On Web Flask,” Jurnal Ilmiah Informatika dan Komputer, vol. 1, no. 1, pp. 56–60, 2024.

M. Arsal, B. Agus Wardijono, and D. Anggraini, “Face Recognition Untuk Akses Pegawai Bank Menggunakan Deep Learning Dengan Metode CNN,” Jurnal Nasional Teknologi dan Sistem Informasi, vol. 6, no. 1, pp. 55–63, Jun. 2020, doi: 10.25077/teknosi.v6i1.2020.55-63.

M. F. Setyawan, J. Devgan Oktawijaya, and S. Agustin, “Implementation of SVM in Soil Type Classification Using RGB Features,” vol. 14, no. 2, 2024, doi: 10.30700/sisfotenika.v14i2.452.

M. Toyib, T. Decky, and K. Pratama, “Ilmu pengetahuan Alam,” Kebumian dan Angkasa, vol. 2, no. 3, pp. 108–120, 2024, doi: 10.62383/algoritma.v2i3.69.

M. Momeny, A. M. Latif, M. Agha Sarram, R. Sheikhpour, and Y. D. Zhang, “A noise robust convolutional neural network for image classification,” Results in Engineering, vol. 10, Jun. 2021, doi: 10.1016/j.rineng.2021.100225.

P. Nyoman and Putu Kusuma Negara, “Deteksi Masker Pencegahan Covid19 Menggunakan Convolutional Neural Network Berbasis Android,” Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), vol. 5, no. 3, pp. 576–583, Jun. 2021, doi: 10.29207/resti.v5i3.3103.

A. Satriawan, B. Imran, and S. Erniwati, “Identifikasi Kemiripan Foto Asli Dan Sketsa Menggunakan Model Generative Adversarial Networks (GANs),” Jurnal Kecerdasan Buatan dan Teknologi Informasi, vol. 2, no. 3, pp. 122–127, 2023.

G. Henry, A. Panjaitan, and F. Simatupang, “Pemodelan Klasifikasi Penyakit Daun Tanaman Tomat dengan Convolutional Neural Network Algorithm,” KLIK: Kajian Ilmiah Informatika dan Komputer, vol. 4, no. 5, pp. 2667–2667, 2024, doi: 10.30865/klik.v4i5.1646.

Y. Jumaryadi, A. Muhammad Ihsan, and B. Priambodo, “Klasifikasi Jenis Buah-Buahan Menggunakan Citra Digital Dengan Metode Convolutional Neural Networks,” KLIK: Kajian Ilmiah Informatika dan Komputer, vol. 4, no. 3, pp. 1737–1746, 2023, doi: 10.30865/klik.v4i3.1421.

J. Homepage, M. Faizal Nazili, A. B. Firmansyah, and R. Purbaningtyas, “Klasifikasi Keparahan Demensia Alzheimer Menggunakan Metode Convolutional Neural Network pada Citra MRI Otak,” MALCOM: Indonesian Journal of Machine Learning and Computer Science, vol. 3, no. 1, pp. 1–7, 2023.

S. Liang, Tony Tan, and J. Jonathan, “MobileNetV3-based Handwritten Chinese Recognition Towards the Effectiveness of Learning Hanzi,” Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), vol. 7, no. 6, pp. 1394–1402, Dec. 2023, doi: 10.29207/resti.v7i6.5505.

A. N. Hermana, M. Gustiana Husada, and O. Kurniawan, “Penerapan SMOTE Untuk Mengatasi Data Imbalance pada Identifikasi Originalitas Sepatu Converse Menggunakan CNN Arsitektur VGG-16,” 2024.

D. Normawati and S. A. Prayogi, “Implementasi Naïve Bayes Classifier Dan Confusion Matrix Pada Analisis Sentimen Berbasis Teks Pada Twitter,” Jurnal Sains Komputer & Informatika (J-SAKTI), vol. 5, no. 2, pp. 697-711, 2021.

I. Wulandari, H. Yasin, and T. Widiharih, “Klasifikasi Citra Digital Bumbu Dan Rempah Dengan Algoritma Convolutional Neural Network (CNN),” JURNAL GAUSSIAN, vol. 9, no. 3, pp. 273–282, 2020.

H. I. Islam, M. Khandava Mulyadien, U. Enri, U. Singaperbangsa, and K. Abstract, “Penerapan Algoritma C4.5 dalam Klasifikasi Status Gizi Balita,” Jurnal Ilmiah Wahana Pendidikan, vol. 8, no. 10, pp. 116–125, 2022, doi: 10.5281/zenodo.6791722.

I. Wulansari and R. Arief, “Analisis Performa Metode Convolutional Neural Network (CNN) Dengan Word Embedding Glove Pada Klasifikasi Sentimen Dari Twitter,” Jurnal Ilmiah Teknologi dan Rekayasa, vol. 28, no. 3, pp. 252–264, 2023, doi: 10.35760/tr.2023.v28i3.6090.

Published
2024-12-28
How to Cite
Muhammad Husni Wahid, & Erik Iman Heri Ujianto. (2024). Efficient Pattern Recognition of Sundanese Script Variants Using CNN. Jurnal RESTI (Rekayasa Sistem Dan Teknologi Informasi), 8(6), 808 - 818. https://doi.org/10.29207/resti.v8i6.6122
Section
Information Technology Articles

Most read articles by the same author(s)