Modified Particle Swarm Optimization on Feature Selection for Palm Leaf Disease Classification

  • Veri Julianto Politeknik Negeri Tanah Laut
  • Ahmad Rusadi Arrahimi Politeknik Negeri Tanah Laut
  • Oky Rahmanto Politeknik Negeri Tanah Laut
  • Mohammad Sofwat Aldi Politeknik Negeri Tanah Laut
Keywords: Disease Identification, Leaf Classification, K-Nearest Neighbors (KNN), Particle Swarm Optimization (PSO), Computational Efficiency

Abstract

Palm oil plantations in Indonesia face challenges in enhancing productivity and profitability, notably due to pest attacks that reduce production. Early identification and classification of plant conditions, particularly palm oil leaves, are crucial for mitigating losses. This study explores the application of artificial intelligence, specifically computer vision and machine learning, for disease detection. Various machine learning techniques, including Local Binary Pattern (LBP), K-Nearest Neighbors (KNN), and Support Vector Machine (SVM), have been used in different studies with varying accuracy. This research focuses on modifying Particle Swarm Optimization (PSO) for feature selection in identifying diseases in palm oil leaves. The PSO modification combined with logistic regression and Bayesian Information Criterion (BIC) significantly enhances KNN performance. Accuracy improved from 95.75% to 97.85%, while precision, recall, and F1-score reached approximately 98.80%. Additionally, the modified KNN+PSO achieved the shortest computation time of 0.0872 seconds, indicating high computational efficiency. These results demonstrate that the PSO modification not only improves accuracy but also computational efficiency, making it an effective method for enhancing KNN performance in detecting palm oil leaf diseases.

Downloads

Download data is not yet available.

References

M. Ichsan, W. Saputra, and A. Permatasari, “Oil palm smallholders on the edge: Why business partnerships need to be redefined,” Br. SPOS Indones., pp. 1–12, 2021, [Online]. Available: https://sposindonesia.org/wp-content/uploads/2021/07/Oil-palm-smallholders-on-the-edge-Why-business-partnerships.pdf

G. A. W. Satia, E. Firmansyah, and A. Umami, “Perancangan sistem identifikasi penyakit pada daun kelapa sawit (Elaeis guineensis Jacq.) dengan algoritma deep learning convolutional neural networks,” J. Ilm. Pertan., vol. 19, no. 1, pp. 1–10, Mar. 2022, doi: 10.31849/JIP.V19I1.9556.

L. A. Harahap, R. I. Fajri, M. F. Syahputra, R. F. Rahmat, and E. B. Nababan, “Identifikasi Penyakit Daun Tanaman Kelapa Sawit dengan Teknologi Image Processing Menggunakan Aplikasi Support Vector Machine,” Talent. Conf. Ser. Agric. Nat. Resour., vol. 1, no. 1, pp. 53–59, 2018, doi: 10.32734/anr.v1i1.96.

J. Zheng et al., “Growing status observation for oil palm trees using Unmanned Aerial Vehicle (UAV) images,” ISPRS J. Photogramm. Remote Sens., vol. 173, pp. 95–121, Mar. 2021, doi: 10.1016/J.ISPRSJPRS.2021.01.008.

H. Hamdani, A. Septiarini, A. Sunyoto, S. Suyanto, and F. Utaminingrum, “Detection of oil palm leaf disease based on color histogram and supervised classifier,” Optik (Stuttg)., vol. 245, no. July, p. 167753, 2021, doi: 10.1016/j.ijleo.2021.167753.

S. Pandiyan, M. Ashwin, R. Manikandan, K. M. Karthick Raghunath, and G. R. Anantha Raman, “Heterogeneous Internet of things organization Predictive Analysis Platform for Apple Leaf Diseases Recognition,” Comput. Commun., vol. 154, pp. 99–110, Mar. 2020, doi: 10.1016/J.COMCOM.2020.02.054.

V. K. Vishnoi, K. Kumar, and B. Kumar, Plant disease detection using computational intelligence and image processing, vol. 128, no. 1. Springer Berlin Heidelberg, 2021. doi: 10.1007/s41348-020-00368-0.

M. Sharif, M. A. Khan, Z. Iqbal, M. F. Azam, M. I. U. Lali, and M. Y. Javed, “Detection and classification of citrus diseases in agriculture based on optimized weighted segmentation and feature selection,” Comput. Electron. Agric., vol. 150, no. May 2017, pp. 220–234, 2018, doi: 10.1016/j.compag.2018.04.023.

H. Ali, M. I. Lali, M. Z. Nawaz, M. Sharif, and B. A. Saleem, “Symptom based automated detection of citrus diseases using color histogram and textural descriptors,” Comput. Electron. Agric., vol. 138, pp. 92–104, Jun. 2017, doi: 10.1016/J.COMPAG.2017.04.008.

G. Saleem, M. Akhtar, N. Ahmed, and W. S. Qureshi, “Automated analysis of visual leaf shape features for plant classification,” Comput. Electron. Agric., vol. 157, pp. 270–280, Feb. 2019, doi: 10.1016/J.COMPAG.2018.12.038.

Z. Wang, M. Li, and J. Li, “A multi-objective evolutionary algorithm for feature selection based on mutual information with a new redundancy measure,” Inf. Sci. (Ny)., vol. 307, pp. 73–88, Jun. 2015, doi: 10.1016/J.INS.2015.02.031.

H. H. Inbarani, A. T. Azar, and G. Jothi, “Supervised hybrid feature selection based on PSO and rough sets for medical diagnosis,” Comput. Methods Programs Biomed., vol. 113, no. 1, pp. 175–185, Jan. 2014, doi: 10.1016/J.CMPB.2013.10.007.

I. Jain, V. K. Jain, and R. Jain, “Correlation feature selection based improved-Binary Particle Swarm Optimization for gene selection and cancer classification,” Appl. Soft Comput., vol. 62, pp. 203–215, Jan. 2018, doi: 10.1016/j.asoc.2017.09.038.

M. Rostami, K. Berahmand, E. Nasiri, and S. Forouzande, “Review of swarm intelligence-based feature selection methods,” Eng. Appl. Artif. Intell., vol. 100, no. September 2020, p. 104210, 2021, doi: 10.1016/j.engappai.2021.104210.

O. S. Qasim and Z. Y. Algamal, “Feature selection using particle swarm optimization-based logistic regression model,” Chemom. Intell. Lab. Syst., vol. 182, pp. 41–46, Nov. 2018, doi: 10.1016/J.CHEMOLAB.2018.08.016.

Y. Xue, T. Tang, W. Pang, and A. X. Liu, “Self-adaptive parameter and strategy based particle swarm optimization for large-scale feature selection problems with multiple classifiers,” Appl. Soft Comput., vol. 88, p. 106031, Mar. 2020, doi: 10.1016/J.ASOC.2019.106031.

Z. Y. Algamal and M. H. Lee, “Penalized logistic regression with the adaptive LASSO for gene selection in high-dimensional cancer classification,” Expert Syst. Appl., vol. 42, no. 23, pp. 9326–9332, 2015, doi: 10.1016/j.eswa.2015.08.016.

J. Cervantes, F. Garcia-Lamont, L. Rodriguez, A. López, J. R. Castilla, and A. Trueba, “PSO-based method for SVM classification on skewed data sets,” Neurocomputing, vol. 228, pp. 187–197, Mar. 2017, doi: 10.1016/J.NEUCOM.2016.10.041.

S. M. Vieira, L. F. Mendonça, G. J. Farinha, and J. M. C. Sousa, “Modified binary PSO for feature selection using SVM applied to mortality prediction of septic patients,” Appl. Soft Comput., vol. 13, no. 8, pp. 3494–3504, Aug. 2013, doi: 10.1016/J.ASOC.2013.03.021.

M. A. El Aziz and A. E. Hassanien, “Modified cuckoo search algorithm with rough sets for feature selection,” Neural Comput. Appl. 2016 294, vol. 29, no. 4, pp. 925–934, Jul. 2016, doi: 10.1007/S00521-016-2473-7.

M. Aladeemy, S. Tutun, and M. T. Khasawneh, “A new hybrid approach for feature selection and support vector machine model selection based on self-adaptive cohort intelligence,” Expert Syst. Appl., vol. 88, pp. 118–131, Dec. 2017, doi: 10.1016/J.ESWA.2017.06.030.

G. I. Sayed, A. E. Hassanien, and A. T. Azar, “Feature selection via a novel chaotic crow search algorithm,” Neural Comput. Appl. 2017 311, vol. 31, no. 1, pp. 171–188, Apr. 2017, doi: 10.1007/S00521-017-2988-6.

A. Moayedikia, K. L. Ong, Y. L. Boo, W. G. Yeoh, and R. Jensen, “Feature selection for high dimensional imbalanced class data using harmony search,” Eng. Appl. Artif. Intell., vol. 57, pp. 38–49, Jan. 2017, doi: 10.1016/J.ENGAPPAI.2016.10.008.

A. A. Nababan, M. Khairi, and B. S. Harahap, “Implementation of K-Nearest Neighbors (KNN) algorithm in classification of data water quality,” J. Mantik, vol. 6, no. 1, pp. 30–35, 2022.

A. Damayunita, R. S. Fuadi, and C. Juliane, “Comparative Analysis of Naive Bayes, K-Nearest Neighbors (KNN), and Support Vector Machine (SVM) Algorithms for Classification of Heart Disease Patients,” J. Online Inform., vol. 7, no. 2, pp. 219–225, 2022, doi: 10.15575/join.v7i2.919.

Published
2024-12-29
How to Cite
Julianto, V., Ahmad Rusadi Arrahimi, Oky Rahmanto, & Mohammad Sofwat Aldi. (2024). Modified Particle Swarm Optimization on Feature Selection for Palm Leaf Disease Classification. Jurnal RESTI (Rekayasa Sistem Dan Teknologi Informasi), 8(6), 846 - 852. https://doi.org/10.29207/resti.v8i6.6049
Section
Information Technology Articles