The Memory Efficiency in a Receptionist Robot's Face Recognition System Using LBPH Algorithm

  • Endang Darmawan Yudi Universitas Bina Darma
  • Yesi Novaria Kunang Universitas Bina Darma
  • Ahmad Zarkasi Universitas Sriwijaya
Keywords: face recognition, LBPH, raspberry pi, memory efficiency

Abstract

This research aims to develop a memory-efficient face recognition system for a receptionist robot using the Local Binary Patterns Histogram (LBPH) algorithm. Given the computational limitations of the Raspberry Pi, the system utilizes optimization techniques including grayscale conversion, noise reduction, and contrast adjustment to enhance processing efficiency. Testing demonstrates that the face recognition accuracy achieves 80.5% to 85.5% in offline mode, and 72% to 81% in real-time mode, with variations due to lighting conditions and facial expressions. The robot's servo motors exhibit a response time between 1.945 and 3.561 seconds, enabling responsive and interactive user engagement. The results suggest practical benefits for deploying face recognition in resource-constrained environments, enhancing the efficiency of robotic receptionist applications.

Downloads

Download data is not yet available.

References

N. Li et al., “Chinese Face Dataset for Face Recognition in an Uncontrolled Classroom ENVIRONMENT,” IEEE Access, vol. 11, 2023, doi: 10.1109/ACCESS.2023.3302919.

R. He, J. Cao, L. Song, Z. Sun, and T. Tan, “Adversarial Cross-Spectral Face Completion for NIR-VIS Face Recognition,” IEEE Trans Pattern Anal Mach Intell, vol. 42, no. 5, 2020, doi: 10.1109/TPAMI.2019.2961900.

J. Tomášik et al., “The Potential of AI-Powered Face Enhancement Technologies in Face-Driven Orthodontic Treatment Planning,” Applied Sciences 2024, Vol. 14, Page 7837, vol. 14, no. 17, p. 7837, Sep. 2024, doi: 10.3390/APP14177837.

P. C. P. Neto, J. R. Pinto, F. Boutros, N. Damer, A. F. Sequeira, and J. S. Cardoso, “Beyond Masks: On the Generalization of Masked Face Recognition Models to Occluded Face Recognition,” IEEE Access, vol. 10, 2022, doi: 10.1109/ACCESS.2022.3199014.

H. Yu, Y. Wang, Y. Tian, H. Zhang, W. Zheng, and F. Y. Wang, “Social Vision for Intelligent Vehicles: From Computer Vision to Foundation Vision,” IEEE Transactions on Intelligent Vehicles, vol. 8, no. 11, pp. 4474–4476, Nov. 2023, doi: 10.1109/TIV.2023.3330870.

W. Sun, X. Min, D. Tu, S. Ma, and G. Zhai, “Blind Quality Assessment for in-the-Wild Images via Hierarchical Feature Fusion and Iterative Mixed Database Training,” IEEE Journal on Selected Topics in Signal Processing, vol. 17, no. 6, pp. 1178–1192, Nov. 2023, doi: 10.1109/JSTSP.2023.3270621.

K. Panetta et al., “A Comprehensive Database for Benchmarking Imaging Systems,” IEEE Trans Pattern Anal Mach Intell, vol. 42, no. 3, pp. 509–520, Mar. 2020, doi: 10.1109/TPAMI.2018.2884458.

Y. Zhong et al., “Dynamic Training Data Dropout for Robust Deep Face Recognition,” IEEE Trans Multimedia, vol. 24, pp. 1186–1197, 2022, doi: 10.1109/TMM.2021.3123478.

C. WANG, “A Comparative Statement for the Facial Recognition Algorithm Via Eigenfaces and the Local Binary Patterns Histograms Algorithm,” i-manager’s Journal on Software Engineering, vol. 15, no. 4, p. 1, Apr. 2021, doi: 10.26634/JSE.15.4.18429.

I. Al Saidi, M. Rziza, and J. Debayle, “A novel texture descriptor: Homogeneous Rotated Local Binary Pattern (HRLBP),” 2020 10th International Symposium on Signal, Image, Video and Communications, ISIVC 2020, Apr. 2021, doi: 10.1109/ISIVC49222.2021.9487538.

S. Chakraborty, S. K. Singh, and K. Kumar, “Facial Biometric System for Recognition Using Extended LGHP Algorithm on Raspberry Pi,” IEEE Sens J, vol. 20, no. 14, pp. 8117–8127, Jul. 2020, doi: 10.1109/JSEN.2020.2979907.

Z. Al-Ameen, H. N. Saeed, and D. K. Saeed, “Fast and Efficient Algorithm for Contrast Enhancement of Color Images,” Review of Computer Engineering Studies, vol. 7, no. 3, p. 60, Sep. 2020, doi: 10.18280/RCES.070303.

D. Shehada, A. Turky, W. Khan, B. Khan, and A. Hussain, “A Lightweight Facial Emotion Recognition System Using Partial Transfer Learning for Visually Impaired People,” IEEE Access, vol. 11, pp. 36961–36969, 2023, doi: 10.1109/ACCESS.2023.3264268.

H. Gong, L. Chen, C. Li, J. Zeng, X. Tao, and Y. Wang, “Online Tracking and Relocation Based on a New Rotation-Invariant Haar-Like Statistical Descriptor in Endoscopic Examination,” IEEE Access, vol. 8, pp. 101867–101883, 2020, doi: 10.1109/ACCESS.2020.2994440.

Y. Guo, Q. Xu, Y. Su, S. J.-I. Access, and undefined 2020, “Visibility detection based on the recognition of the preceding vehicle’s taillight signals,” ieeexplore.ieee.orgY Guo, Q Xu, Y Su, S JiangIEEE Access, 2020•ieeexplore.ieee.org, Accessed: Sep. 14, 2024. [Online]. Available: https://ieeexplore.ieee.org/abstract/document/9257398/

S. Liu, J. Chen, … S. R. C. and S. for V., and undefined 2019, “A new multi-focus image fusion algorithm and its efficient implementation,” ieeexplore.ieee.orgS Liu, J Chen, S RahardjaIEEE Transactions on Circuits and Systems for Video Technology, 2019•ieeexplore.ieee.org, Accessed: Sep. 14, 2024. [Online]. Available: https://ieeexplore.ieee.org/abstract/document/8653405/

K. Chen, T. Yi, Q. L.-I. S. P. Letters, and undefined 2021, “Lightqnet: Lightweight deep face quality assessment for risk-controlled face recognition,” ieeexplore.ieee.orgK Chen, T Yi, Q LvIEEE Signal Processing Letters, 2021•ieeexplore.ieee.org, Accessed: Sep. 14, 2024. [Online]. Available: https://ieeexplore.ieee.org/abstract/document/9528058/

D. Kim, J. Hyun, and B. Moon, “Memory-efficient architecture for contrast enhancement and integral image computation,” 2020 International Conference on Electronics, Information, and Communication, ICEIC 2020, Jan. 2020, doi: 10.1109/ICEIC49074.2020.9051296.

A. H. Diab, I. T. Ahmed, and W. M. Jasim, “Analyze the Existing Contrast Enhancement Algorithms and Image Quality Assessment: Survey,” AIP Conf Proc, vol. 3009, no. 1, Feb. 2024, doi: 10.1063/5.0193832/3265139.

G. Ghosh and K. S. Swarnalatha, “A Detail Analysis and Implementation of Haar Cascade Classifier,” pp. 341–359, 2022, doi: 10.1007/978-981-16-3342-3_28.

W. El-Tarhouni, A. Abdo, and A. Elmegreisi, “Feature fusion using the Local Binary Pattern Histogram Fourier and the Pyramid Histogram of Feature fusion using the Local Binary Pattern Oriented Gradient in iris recognition,” in 2021 IEEE 1st International Maghreb Meeting of the Conference on Sciences and Techniques of Automatic Control and Computer Engineering, MI-STA 2021 - Proceedings, 2021. doi: 10.1109/MI-STA52233.2021.9464473.

D. Loktev, A. Loktev, R. Stepanov, M. Faisal, and E. M. Zamzami, “Comparative Analysis of Inter-Centroid K-Means Performance using Euclidean Distance, Canberra Distance and Manhattan Distance,” J Phys Conf Ser, vol. 1566, no. 1, p. 012112, Jun. 2020, doi: 10.1088/1742-6596/1566/1/012112.

Published
2024-12-25
How to Cite
Yudi, E. D., Yesi Novaria Kunang, & Zarkasi, A. (2024). The Memory Efficiency in a Receptionist Robot’s Face Recognition System Using LBPH Algorithm. Jurnal RESTI (Rekayasa Sistem Dan Teknologi Informasi), 8(6), 719 - 729. https://doi.org/10.29207/resti.v8i6.6048
Section
Information Technology Articles