Prototype of Swiftlet Nest Moisture Content Measurement Using Resistance Sensor and Machine Learning

  • Ratu Anggriani Tangke Parung Satya Wacana Christian University
  • Hanna Arini Parhusip Satya Wacana Christian University
  • Suryasatriya Trihandaru Satya Wacana Christian University https://orcid.org/0000-0002-7147-1673
Keywords: swallow’s nests, moisture content, IoT, Machine Learning, Neural Network, Proreska

Abstract

Swiftlet nests are highly valued for their health and cosmetic benefits, with moisture content crucial in determining their quality. Traditional moisture measurement methods are often slow and can potentially damage the samples. This study introduces PRORESKA, an innovative system utilizing resistance sensors and Machine Learning (ML) for non-destructive, and real-time moisture measurement. The system incorporates a voltage divider circuit to establish a correlation between resistance data and moisture content. Three mathematical models (linear, exponential, and modulated exponential) and a neural network were employed to predict moisture content. Validation tests conducted on paper and swiftlet nests indicated that the neural network model, enhanced through transfer learning, achieved superior accuracy. The results demonstrated a strong correlation between predicted and actual moisture content (R² = 0.9759), with the neural network model attaining a mean squared error (MSE) of 0.01. This method holds significant potential to improve the efficiency and cost-effectiveness of moisture measurement for swiftlet nests and similar applications.

Downloads

Download data is not yet available.

References

H. M. Kim, Y. M. Lee, E. H. Kim, S. W. Eun, H. K. Sung, H. Ko, S. J. Youn, Y. Choi, W. Yamada, and S. M. Shin., “Anti-Wrinkle Efficacy of Edible Bird’s Nest Extract: A Randomized, Double-Blind, Placebo-Controlled, Comparative Study,” Front. Pharmacol., vol. 13, no. March, hal. 1–10, 2022, doi: 10.3389/fphar.2022.843469..

A. Septiarini, F. Maulana, H. Hamdani, R. Saputra, T. Wahyuningrum, and Indra, “Classifying the Swallow Nest Quality Using Support Vector Machine Based on Computer Vision,” Proc. - 2022 IEEE Int. Conf. Cybern. Comput. Intell. Cybern. 2022, pp. 474–478, 2022, doi: 10.1109/CyberneticsCom55287.2022.9865498.

L. Castillo, N. Ramírez, E. Baltodano, R. Vargas, and G. Hanley, “Design of Experiments Assessment for the Determination of Moisture Content in Five Herbal Raw Materials Contained in Tea Products,” Borneo J. Pharm., vol. 3, no. 1, pp. 22–35, 2020, doi: DOI: https://doi.org/10.33084/bjop.v3i1.1236.

T. F. Prasetyo, A. F. Isdiana, and H. Sujadi, “Measure Device of Water Content On Food Materials Based On Internet of Things,” Int. J. Inf. Syst. Technol. Akreditasi, vol. 3, no. 36, pp. 234–245, 2020.

M. W. Rasheed, J. Tang, A. Sarwar, S. Shah, N. Saddique, M. U. Khan, M. I. Khan, S. Nawasz, R. R. Shamshiri, M. Aziz, and M. Sultan., “Soil Moisture Measuring Techniques and Factors Affecting the Moisture Dynamics : A Comprehensive Review,” Sustainability, vol. 14, no. 11538, 2022, doi: https://doi.org/10.3390/su141811538.

A. Daud, S. Suriati, and N. Nuzulyanti, “Kajian Penerapan Faktor yang Mempengaruhi Akurasi Penentuan Kadar Air Metode Thermogravimetri,” Lutjanus, vol. 24, no. 2, pp. 11–16, 2020, doi: 10.51978/jlpp.v24i2.79.

L. C. M. Dafico, E. Barreira, R. M. S. F. Almeida, and H. Carasek, “Comparison of Infrared Thermography and Other Traditional Techniques to Assess Moisture Content of Wall Specimens,” Sensors, vol. 22, no. 9, 2022, doi: 10.3390/s22093182.

B. M. Olivo and A. Pan, “Internet of Things: State-of-the-art, Computing Paradigms and Reference Architectures,” IEEE Lat. Am. Trans., vol. 20, no. 1, pp. 49–63, 2022, doi: 10.1109/TLA.2022.9662173.

M. Hussain, S. Hasnain, N. A. Khan, S. Bano, F. Zuhra, M. Ali, M. Khan, N. Abbas, and A. Ali., “Design And Fabrication Of A Fast Response Resistive-Type Humidity Sensor Using Polypyrrole (Ppy) Polymer Thin Film Structures,” Polymers (Basel)., vol. 13, no. 18, hal. 1–17, 2021, doi: 10.3390/polym13183019.

S. M. Majhi, A. Mirzaei, H. W. Kim, S. S. Kim, and T. W. Kim, “Recent Advances in Energy-Saving Chemiresistive Gas Sensors: A review,” Nano Energy, vol. 79, no. July 2020, p. 105369, 2021, doi: 10.1016/j.nanoen.2020.105369.

D. Kim, T. Kim, J. Jeon, and Y. Son, “Convolutional Neural Network-Based Soil Water Content and Density Prediction Model for Agricultural Land Using Soil Surface Images,” Appl. Sci., vol. 13, no. 5, 2023, doi: 10.3390/app13052936.

Y. Ren, C. Huang, Y. Jiang, and Z. Wu, “Neural Network Prediction Model for Sinter Mixture Water Content Based on KPCA-GA Optimization,” Metals (Basel)., vol. 12, no. 8, pp. 1–14, 2022, doi: 10.3390/met12081287.

M. Darwis, H. A. Al Banna, S. R. Aji, D. Khoirunnisa, and N. Natassa, “IoT Based Early Flood Detection System with Arduino and Ultrasonic Sensors in Flood-Prone Areas,” J. Tek. Inform., vol. 16, no. 2, pp. 133–140, 2023, doi: 10.15408/jti.v16i2.32161.

T. Yang, X. Zheng, H. Xiao, C. Shan, and J. Zhang, “Moisture content online detection system based on multi-sensor fusion and convolutional neural network,” Front. Plant Sci., vol. 15, no. March, pp. 1–12, 2024, doi: 10.3389/fpls.2024.1289783.

J. Zhang, A. Heath, H. M. T. Abdalgadir, R. J. Ball, and K. Paine, “Electrical Impedance Behaviour of cCarbon Fibre Reinforced Cement-based Sensors at Different Moisture Contents,” Constr. Build. Mater., vol. 353, no. September, p. 129049, 2022, doi: 10.1016/j.conbuildmat.2022.129049.

A. Mollalo, K. M. Rivera, and B. Vahedi, “Artificial neural network modeling of novel coronavirus (COVID-19) incidence rates across the continental United States,” Int. J. Environ. Res. Public Health, vol. 17, no. 12, pp. 1–13, 2020, doi: 10.3390/ijerph17124204.

B. Asadi and Q. Memon, “Efficient Breast Cancer Detection Via Cascade Deep Learning Network,” Int. J. Intell. Networks, vol. 4, no. January, pp. 46–52, 2023, doi: 10.1016/j.ijin.2023.02.001.

M. Ahmed, N. Afreen, M. Ahmed, M. Sameer, and J. Ahamed, “An Inception V3 Approach For Malware Classification Using Machine Learning And Transfer Learning,” Int. J. Intell. Networks, vol. 4, no. November 2022, pp. 11–18, 2023, doi: 10.1016/j.ijin.2022.11.005.

A. Lazcano, P. J. Herrera, and M. Monge, “A Combined Model Based on Recurrent Neural Networks and Graph Convolutional Networks for Financial Time Series Forecasting,” Mathematics, vol. 11, no. 1, 2023, doi: 10.3390/math11010224.

M. Luo, “Multi-Sensor Based Strategy Learning With Deep Reinforcement Learning For Unmanned Ground Vehicle,” Int. J. Intell. Networks, vol. 4, no. October, pp. 325–336, 2023, doi: 10.1016/j.ijin.2023.11.003.

Published
2024-10-28
How to Cite
Parung, R. A. T., Parhusip, H. A., & Trihandaru, S. (2024). Prototype of Swiftlet Nest Moisture Content Measurement Using Resistance Sensor and Machine Learning. Jurnal RESTI (Rekayasa Sistem Dan Teknologi Informasi), 8(5), 674 - 680. https://doi.org/10.29207/resti.v8i5.5923
Section
Information Systems Engineering Articles