Classification of Toraja Wood Carving Motif Images Using Convolutional Neural Network (CNN)
Abstract
Wood carving is a cultural heritage with deep meaning and significance for the Toraja ethnic group's culture. By understanding the meaning of each Toraja carving, both tourists and the local community can gain knowledge about Toraja culture, thereby preserving and maintaining the culture amidst modern developments. Image processing approaches, particularly the development of Convolutional Neural Networks (CNN), offer a solution for extracting information from the diverse and intricate patterns of Toraja wood carvings. This study is highly significant as it implements a deep learning model using the CNN algorithm optimized with the ResNet50 architecture. The methodology in this study involves adjusting the batch size during the model training phase and applying weak-to-strong pixel transformation during the double threshold hysteresis phase in the Canny Feature Extraction process on the edges of Toraja carving images, resulting in ResNet50 architecture accurately recognizing the patterns of Toraja wood carvings. The results demonstrate significant improvements in the performance of the ResNet50 architecture with the preprocessed dataset. average precision, recall, precision, and F1-Score improvements in each Toraja carving class. For the Pa' Lulun Pao class, it was found that the precision and recall values were 0.94, and the F1-Score was 0.94. The Pa’ Somba class also showed good results, with a precision value of 0.9697, a recall of 0.96, and an F1-Score of 0.9648. The Pa’ Tangke Lumu class showed even better results, with a precision value of 0.9898, a recall of 0.97, and an F1-Score of 0.9798. The Pa’ Tumuru class also demonstrated good performance, with a precision value of 0.9327, a recall of 0.97, and an F1-Score of 0.9500. This study not only underscores the effectiveness of processing in enhancing CNN capabilities but also opens opportunities for further research in applying these methods to various image types and exploring different CNN architectures.
Downloads
References
S. Liu, L. Wang, and W. Yue, “An efficient medical image classification network based on multi-branch CNN, token grouping Transformer and mixer MLP,” Appl. Soft Comput., vol. 153, p. 111323, 2024, doi: https://doi.org/10.1016/j.asoc.2024.111323.
N. S. Ouf, “Leguminous seeds detection based on convolutional neural networks: Comparison of Faster R-CNN and YOLOv4 on a small custom dataset,” Artif. Intell. Agric., vol. 8, pp. 30–45, 2023, doi: 10.1016/j.aiia.2023.03.002.
M. Xia, J. Chen, G. Yang, and S. Wang, “Robust detection of seam carving with low ratio via pixel adjacency subtraction and CNN-based transfer learning,” J. Inf. Secur. Appl., vol. 75, p. 103522, 2023, doi: https://doi.org/10.1016/j.jisa.2023.103522.
E. Fragoso-Navarro, K. Rangel-Espinoza, M. Nakano-Miyatake, M. Cedillo-Hernandez, and H. Perez-Meana, “Seam Carving based visible watermarking robust to removal attacks,” J. King Saud Univ. - Comput. Inf. Sci., vol. 34, no. 7, pp. 4499–4513, 2022, doi: 10.1016/j.jksuci.2021.03.010.
M. Das and M. Panda, “Seam carving, horizontal projection profile and contour tracing for line and word segmentation of language independent handwritten documents,” Results Eng., vol. 18, no. September 2022, p. 101110, 2023, doi: 10.1016/j.rineng.2023.101110.
I. Rodriguez-Conde, C. Campos, and F. Fdez-Riverola, Optimized convolutional neural network architectures for efficient on-device vision-based object detection, vol. 34, no. 13. Springer London, 2022.
H. Pei, C. Zhang, X. Zhang, X. Liu, and Y. Ma, “Recognizing materials in cultural relic images using computer vision and attention mechanism,” Expert Syst. Appl., vol. 239, p. 122399, 2024, doi: https://doi.org/10.1016/j.eswa.2023.122399.
S. Gao, G. Huang, X. Chen, H. Jiang, L. Zhou, and X. Gao, “Two-stage deep learning-based video image recognition of early fires in heritage buildings,” Eng. Appl. Artif. Intell., vol. 129, p. 107598, 2024, doi: https://doi.org/10.1016/j.engappai.2023.107598.
I. W. A. S. Darma, N. Suciati, and D. Siahaan, “CARVING-DETC: A network scaling and NMS ensemble for Balinese carving motif detection method,” Vis. Informatics, vol. 7, no. 3, pp. 1–10, 2023, doi: 10.1016/j.visinf.2023.05.004.
A. P. Wibawa et al., “Decoding and preserving Indonesia’s iconic Keris via A CNN-based classification,” Telemat. Informatics Reports, vol. 13, no. December 2023, p. 100120, 2024, doi: 10.1016/j.teler.2024.100120.
L. Z. PCSW and Y. Kristian, “Identifikasi Motif Jepara pada Ukiran dengan Memanfaatkan Convolutional Neural Network,” J. Nas. Tek. Elektro Dan Teknol. Inf., vol. 9, no. 4, pp. 403–413, 2020, doi: https://doi.org/10.22146/jnteti.v9i4.541.
M. Irshad, N. F. Law, K. H. Loo, and S. Haider, “IMGCAT: An approach to dismantle the anonymity of a source camera using correlative features and an integrated 1D convolutional neural network,” Array, vol. 18, no. February, p. 100279, 2023, doi: 10.1016/j.array.2023.100279.
D. A. M. Yusuf, “TA: IMPLEMENTASI DEEP RESIDUAL NETWORK (RESNET) DALAM IDENTIFIKASI PENYAKIT TUMOR OTAK PADA MANUSIA,” 2021.
F. Ben Nasr Barber and A. Elloumi Oueslati, “Human exons and introns classification using pre-trained Resnet-50 and GoogleNet models and 13-layers CNN model,” J. Genet. Eng. Biotechnol., vol. 22, no. 1, p. 100359, 2024, doi: 10.1016/j.jgeb.2024.100359.
M. G. S. FINKA, “IMPLEMENTASI K-NEAREST NEIGHBOR (KNN) UNTUK KLASIFIKASI CITRA SERAT KAYU,” 2023.
H. Hua, M. Liu, Y. Li, S. Deng, and Q. Wang, “An ensemble framework for short-term load forecasting based on parallel CNN and GRU with improved ResNet,” Electr. Power Syst. Res., vol. 216, p. 109057, 2023, doi: https://doi.org/10.1016/j.epsr.2022.109057.
D. Z. E. Prastya, D. P. Pamungkas, and R. K. Niswatin, “Implementasi Metode Gaussian Filter Dan Median Filter Untuk Penghalusan Gambar,” in Prosiding SEMNAS INOTEK (Seminar Nasional Inovasi Teknologi), 2022, vol. 6, no. 2, pp. 178–187.
S. Sinurat and E. R. Siagian, “Peningkatan Kualitas Citra Dengan Gaussian Filter Terhadap Citra Hasil Deteksi Robert,” Pelita Inform. Inf. dan Inform., vol. 9, no. 3, pp. 225–231, 2021.
P. Khodaee, A. Esfahanipour, and H. Mehtari Taheri, “Forecasting turning points in stock price by applying a novel hybrid CNN-LSTM-ResNet model fed by 2D segmented images,” Eng. Appl. Artif. Intell., vol. 116, p. 105464, 2022, doi: https://doi.org/10.1016/j.engappai.2022.105464.
S. Ani, M. Furqan, and R. S. T. P. Bolon, “Deteksi Tepi Pola Tulisan Arab Menggunakan Metode Canny pada Nisan Kuno di Sumatera Utara,” J. Teknol. Sist. Inf. dan Sist. Komput. TGD, vol. 6, no. 1, pp. 86–97, 2023.
M. Gong, D. Wang, X. Zhao, H. Guo, D. Luo, and M. Song, “A review of non-maximum suppression algorithms for deep learning target detection,” in Seventh Symposium on Novel Photoelectronic Detection Technology and Applications, 2021, vol. 11763, pp. 821–828.
I. Kurniasari, Y. B. Utomo, and A. D. Evasari, “Perancangan Aplikasi Pengukur Pakaian Berbasis Mobile,” Inf. (Jurnal Inform. dan Sist. Informasi), vol. 14, no. 2, pp. 170–179, 2022.
F. Marpaung, F. Aulia, and R. C. Nabila, “COMPUTER VISION DAN PENGOLAHAN CITRA DIGITAL.” PUSTAKA AKSARA, 2022.
T. Chen, Y. Tan, Z. Zhang, N. Luo, B. Li, and Y. Li, “Dataflow optimization with layer-wise design variables estimation method for enflame CNN accelerators,” J. Parallel Distrib. Comput., vol. 189, p. 104869, 2024, doi: https://doi.org/10.1016/j.jpdc.2024.104869.
B. P. Pratiwi, A. S. Handayani, and S. Sarjana, “Pengukuran Kinerja Sistem Kualitas Udara Dengan Teknologi Wsn Menggunakan Confusion Matrix,” J. Inform. Upgris, vol. 6, no. 2, 2020.
Copyright (c) 2024 Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi)
This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright in each article belongs to the author
- The author acknowledges that the RESTI Journal (System Engineering and Information Technology) is the first publisher to publish with a license Creative Commons Attribution 4.0 International License.
- Authors can enter writing separately, arrange the non-exclusive distribution of manuscripts that have been published in this journal into other versions (eg sent to the author's institutional repository, publication in a book, etc.), by acknowledging that the manuscript has been published for the first time in the RESTI (Rekayasa Sistem dan Teknologi Informasi) journal ;